Corr. Mem. Prof. Dr. Eng. GEORGI MILEV Hon. Prof. Dr. Eng. IVO MILEV

APPLIED GEODESY

Part 1 ENGINEERING GEODESY

SUMMARIZED ENGLISH PRESENTATION

Corr. Mem. Prof. Dr. Eng. GEORGI MILEV Hon. Prof. Dr. Eng. IVO MILEV

APPLED GEODESY

Part 1 ENGINEERING GEODESY

SUMMARIZED ENGLISH PRESENTATION

Union of Surveyors and Land Managers in Bulgaria Sofia, 2017

PREFACE TO THE SUMMARIZED ENGLISH PRESENTATION

This book is a summarized presentation and covers the English part of the complex monograph Applied Geodesy - Part 1. Engineering Geodesy. In addition, some explanations are added at the end, as well as a presentation part of the monograph, reviews, ratings and reviews. Due to the unconventionally huge volume of the complex monograph (2870 computer pages), the number of books – 5, type, contents and exposition, language, etc. the reader may have difficulties with the overall view and perception of what is presented in the monograph. This is avoided with the proposed presentation. Along with this, the presentation will, to a certain extent, make the complex monograph more accessible to interested English speakers. Thus, it appears as an essential complementary and facilitating element of the complex monograph. It contributes to visualizing the image, conceptions of the essence, ideas, understandings and the type and manner of presentation of these interdisciplinary fields and areas of science, education and practice of the authors. Moreover, the complete translation of the complex monograph from Bulgarian to English would again require enormous efforts, work and time. In the presentation, due to its specificity and character, there are inevitably semantic repetitions, repetition of figures and others. We hope that they will be well perceived by the readers. We also hope that the summarized presentation of the complex monograph will contribute, to a certain extent, to its more successful perception and use.

Sofia, 11/03/2023.

The authors

CONTENTS OF THE ENGLISH PRESENTATION TO COMPLEX MONOGRAPH

1. General introduction to complex monograph

2. Joint presentation and evaluation of aapplied and engineering geodesy

- 2.1. Preface to applied geodesy
- 2.2. Contents of the applied geodesy
- 2.3. Preface to engineering geodesy
- 2.4. Contents of engineering geodesy
- 3. Posters
- 4. Books
- 4.1. Book 1
- 4.2. Book 2
- 4.3. Book 3.1
- 4.4. Book 3.2
- 4.5. Book 3.3

5. Summaries and evaluation

- 5.1. Nature, role and importance of the system of monographs in engineering geodesy1
- 5.2. Applied geodesy part 1. Engineering geodesy1 review
- 5.3. Other reviews and feedback.

1. GENERAL INTRODUCTION TO COMPLEX MONOGRAPH

A completed generalizing, interdisciplinary, peer-reviewed work entitled Applied Geodesy -Part 1. Engineering Geodesy (in Bulgarian, nearly 9 years in the making) has been published. It consists of 5 books (complex monograph). Each of the books practically represents (a system of monographs). There is a short introduction in English as well (title page, abstract, preface, table of contents, authors' biographies). This is a summary presentation of the English part of the complex monograph.

A systematization, summary and complex presentation of Applied Geodesy, and of Part 1. Engineering Geodesy was done, of it, together with space and geospatial technologies and their application mainly in construction, architecture, territorial organization and the role and place of Engineering Geodesy in their implementation. For the first time, this complex field and activity are presented together, and Engineering Geodesy as its permanent element. Furthermore, the exposition of the text in the books follows the course of the traditional stages of the organization of the territory (physical planning), the construction (the idea, the preliminary studies, the design, the implementation of construction) and exploitation of the engineering objects and their complexes.

The work is formed as a united, original digital whole (a complex digital monograph, 2870 computer pages) with unified table of contents, exposition, numbering and other new elements. There are also claims for the introduction of new categories and concepts (complex monograph, systems of monographs, numbering system), systematization, summarization and complex presentation of parts of science and practice, and others. The work has no analogue in literature.

The authors

2. JOINT PRESENTATION AND EVALUATION OF APPLIED GEODESY AND ENGINEERING GEODESY

The essence and content of Applied and Engineering Geodesy are presented according to the views of the authors.

The insertion of the part about the nature and presentation of Applied and Engineering Geodesy in book 1 of Part 1. Engineering Geodesy is determined by the need for the reader to be able to orientate and perceive the hierarchy in the presentation of the problems of Applied and Engineering Geodesy, since at this stage the emphasis is placed on the issue of Engineering Geodesy, not Applied Geodesy as a whole. This situation will be avoided by simultaneous presentation of the three sections of Applied Geodesy. Then the title page, instead of the present one of Book 1, will be of Applied Geodesy.

APPLIED GEODESY

Corr. Mem. Prof. Dr. Eng. GEORGI MILEV Hon. Prof. Dr. Eng. IVO MILEV

APPLIED GEODESY

Union of Surveyors and Land Managers in Bulgaria Sofia, 2017

1.1. Preface to Applied geodesy

Applied geodesy encompasses the versatile application of the science of Geodesy.

In world literature, unfortunately, there is no systematization, summarization, structuring and presentation of the problems of Applied Geodesy (theory and practice) as a whole, as a separate area of the science of Geodesy. The present monographic work is intended to solve these problems, and in particular those of Engineering Surveying.

The application of Geodesy – Applied Geodesy, is distinguished and defined here by the authors in three aspects (directions, areas): *engineering* – 1. **Engineering Surveying**, *natural scientific* – 2. **Application of Geodesy in Earth Sciences**, and *other applications* – 3. **Non-engineering and natural-scientific aspects of application of Geodesy**. The first aspect is treated most multilaterally, it is most widely applied and is with enormous reference literature.

The presentation of the content of matter in these three aspects is foreseen by the authors to be, in accordance with the aspects, in three separate **expositions – parts**.

Part 1. Engineering Surveying issued in the form of three separate books:

Book 1 "Basics, systems and technologies in Engineering Surveying";

Book 2 "Design and implementation of physical and general plans";

Book 3 "Construction of linear objects, buildings, facilities, installation of technological equipment. Plans of the built complex objects".

Book 2 is published: in digital form, an E-book, by [http://Billio.bg] at the end of 2016, and in an analogue form – by the Avangard Publ. House, in the beginning of 2017 in a volume of 330 pp. It is distributed in the bookstores of UACEG, UMG, the SEK and Blestyasht Fakel Publ. Houses.

Book 1 is the present edition (in digital and analogue form) and Book 3 is prepared for publication also in 2017.

The books are an edition of the Union of Surveyors and Land Managers in Bulgaria.

<u>**Parts 2 and 3**</u> are still in a project but it is intended to preserve the manner of preparation and form as those of the exposition of the first part.

The text and figures related to the presentation of Applied Geodesy and Engineering Surveying are given here at the beginning of Book 1, and although they are divided, the exposition, comments and references are treated united.

The authors

1.2. Contents of applied geodesy

01. APPLIED GEODESY

- 01.1. Introduction
- 01.2. General principles
- 01.3. Essence, aspects, technologies and systems of Applied Geodesy
- 01.3.1. Essence of Applied Geodesy
- 01.3.2. Aspects
- 01.3.3. Geospatial technologies, instruments and systems
- 01.4. Scope, structure, role and importance of Applied Geodesy
- 01.4.1. Scope
- 01.4.2. Structure and contents
- 01.4.3. Role and importance of Applied Geodesy
- 01.4.4. References
- 01.4.5. Conclusion

ENGINEERING GEODESY

Corr. Mem. Prof. Dr. Eng. GEORGI MILEV Hon. Prof. Dr. Eng. IVO MILEV

APPLIED GEODESY Part 1 ENGINEERING GEODESY

Union of Surveyors and Land Managers in Bulgaria Sofia, 2017

1.3. Preface to Engineering Geodesy

The first part of the authors' project is **1. Engineering Surveying/ Geodesy**.

It is noted in the preface of 01 that **1. Engineering Surveying** consists of 3 separate books: Book 1 **"Basics, systems and technologies in Engineering Surveying"**; Book 2 **"Design and implementation of physical and general plans"** and Book 3 **"Construction of linear objects, buildings, facilities, installation of technological equipment. Plans of the built complex objects"**. Book 2 has been published and Books 1 and 3 are being prepared for publication.

The three books are separate but organically integrated in a digital entity -1. **Engineering Surveying**. The structure, numbering of titles, figures, tables, references, etc., of the three books are an indivisible part - an element of 1. Engineering Surveying. This determines the possibility of offering the three books further in the form of a unified digital edition as **1. Engineering Surveying**. In fact, the book was initially planned in this way.

It has to be clearly mentioned here that the **structure, contents and exposition** of Book **1. Engineering Surveying** are original, reflect the views and positions of the authors and do not correspond to other works on Engineering Surveying in Bulgaria and abroad. To a great extent it includes results of theoretical formulations, their research and experience from the applied activities in the various areas related to the design, implementation and operation of engineering objects or their complexes. Undoubtedly, this has a positive side for illustrating the exposition but there is also a negative aspect, which we hope to be not significant. At the same time the presentation is in compliance with **Bulgarian legislation** and its alignment with that of the European Union.

1.4. Contents of engineering geodesy

02. ENGINEERING GEODESY

- 02.1. Essence
- 02.2. Tasks
- 02.3. Scope
- 02.4. Structure and contents
- 02.5. Penetration of engineering surveying
- 02.6. Role of engineering surveying
- 02.7. References on Applied Geodesy and Engineering Surveying
- 02.7.1. General
- 02.7.2. References on Applied Geodesy
- 02.7.3. References and international activity on Engineering Surveying
- 02.8. Conclusions

REFERENCES

3. POSTERS OF THE BOOKS FROM THE COMPLEX MONOGRAPH

The project "APPLIED GEODESY" of the authors G. Milev and I. Milev consists of three parts:

1. Engineering surveying,

2. Application of Geodesy in Earth Sciences,

3. Other (non-engineering and natural scientific) aspects of Geodesy.

The three parts together treat the versatile application of Geodesy.

Part 1. ENGINEERING SURVEYING consists of five books:

1. Basics, systems and technologies in Engineering Surveying - 496 p., 2017y.

2. Design and implementation of physical and general plans - 325 p., 2017y.

3. Construction of linear objects, buildings, facilities, installation of technological equipment. Plans of the built complex objects – due to the large volume, over 1500 pages, it is separated into three books – 3(3.1 - 524 p., 2020 y.), 3(3.2 - 530 p.) and 3(3.3 - 468 p.), 2022 y..

Every one of the five books has a short presentation in English language (cover page, annotation, foreword, contents, biographies of the authors).

The books of Part 1 are formed as a complete whole. They contain uniform numbering of text, formulas, tables and black & white, and colour figures, and are in an A4 format. They are published in Avangard Publishing House and can be purchased in the bookstores of UACEG, UMG, SEK and Blestyasht Fakel.

The books were uploaded in digital form on the server of the electronic library Biblio.bg at http://biblio.bg in .pdf file format. General information and the beginning of the books to page 22 are immediately available by searching "Georgi Milev" or at https://tinyurl.com/wmbq25c; https://tinyurl.com/

T he books represent an original systematization, summary and axposition of this branch of science and practice in monographic form and are an edition of the Union. The authors have sponsored the books.

Fig. 1. Poster of the complex monograph

Fig. 2. The five books from the complex monographs on Engineering Geodesy

Annotation

nterdisciplinary problems related to the development of territories Interdisciplinary problems related to the development of territories – development schemes, physical and general plans of a complex of objects – industrial enterprises, airports, etc., are presented along with the role of geodesy and the contribution of land surveyors to their realization. The major emphasis is laid on the technology of design and implementation of regulation plans, general plans and schemes and drafts for vertical planning. Moreover the problems are treated from an interdisciplinary point of view and in the context of the modern possibilities of: digital design, geospatial technologies, using of global navigation satellite systems, electronic systems for data measurement and processing, tracing and monitoring, geoin-formation systems, use of modern digital cadastre and others. Along with this the exposition is based and reflects, insofar as possible, the with this the exposition is based and reflects, insolar as possible, the huge current normative and subordinate basis – laws, rules, regula-tions, instructions, guidelines, etc., and it has become necessary in some cases to cite directly some major aspects of it. However this basis is dynamically developing and its actual state should be always accounted for A number of real practical examples of physical plan-ning of territories are also included. The long-year work and experi-tions of the rules real-state algorithm. ence of the authors are also reflected.

Indoubtedly such a broad spectrum of issues cannot be exhaus-U tively considered in all its aspects. A balance has been sought for in the structure of the book and exposition to present the main problems and the emphasis is put on the aspects related more directly to the activities of surveyors in the area of physical planning.

The book is intended primarily for surveyors. However, occasion of the interdisciplinary nature of the problems and the manner of exposition, it can be very useful for a broad circle of specialists – architects, engineers, lawyers and others working on the issues of physical planning. The benefits may be for the lecturers and all physical planning the benefits may be for the lecturers and all or the surveyord problems, workers in the municipalities and courts, studying these problems, workers in the municipalities and courts and in the design and construction in this area, owners of land estates and many others.

The authors

REVIEWERS:

- Corr. Mem. Prof. D.Sc. Arch. Atanas Kovachev, Assoc. Prof. Dr. Enz. V. Kotseva
- Prof. Dr. Eng. Ilinka Ivanova Assoc. Prof. Dr. Eng. Todor Kostadinov
- ISBN 978-619-90732-1-6

REVISED BOOK 2022

Corr. Mem. Prof. Dr. Eng. GEORGI MILEV Hon. Prof. Dr. Eng. IVO MILEV

APPLIED GEODESY Part 1 ENGINEERING GEODESY

> Book 2 **DESIGN AND IMPLEMENTATION OF PHYSICAL AND GENERAL PLANS**

> > and Land Ma Sofia, 2016

Fig. 3. Book 1 poster

Editions of the book

The book "Design and inplementa-tion of structural and master plans "is part of the project "Applied Geode-sy" of authors, consisting of three parts 1. Engineering Surveying 2. Application of Geodesy in Earth sci-The book "Design and inplementa-

. Non-engineering and natural science aspects of application of geodesy

The three parts together treat the comprehensive application of Sur-veying. The book is actually Book 2 of part 1 "Engineering Surveying" which is ready for printing in form of three The three parts together treat the

Basics, systems and technologies of Engineering Surveying; 2. Design and implementation of struc-

tural and master plans; 3. Construction of linear objects build-

ings, structures, installation of technological equipment. Plans of built com-plex objects.

Book 2 is in a volume of 330 pages - text, formulas, tables and black -white and colorful figures in a format Δ.4

I is printed in Publishing house "Avan-gard" and can be bought in book-stores of the University of Architecture, Civil Engineering and Geodesy, SEC and Shining a torch. In digital form it is uploaded to the server: t is printed in Publishing house "Avanhttp://biblio.bg

of the e-bookstore Biblio.bg in pdf for-mat. The book is available up to page 22. The book is edition of the Union of Surveyors and Land Managers in Bul-garia. The other two books of part 1. Engineering Surveying will be printed and digitally accessible on the same server.

Annotation

Book 1 treats the fundamentals of Engineering Surveying – the modern: investment process, normative base, geodetic basis (digital data, plans, maps and control networks), instruments, ap-(tagitat data, pians, maps and control networks), instruments, ap-paratuses and systems; reference and coordinate systems and sur-faces, theoretical bases of geodetic measurement processing, algo-rithms and software, modern numerical geospatial technologies and their application in Engineering Surveying and related information systems. The main issues of tracing are presented: essence, elements, methods, technologies, accuracy, norms and cases; theoretical bases and practice in the control and determination of displacements and investigation of deformations of angioretics elements, and ne proceed in the control and determination of displacements and ivestigation of deformations of engineering objects, including in indslides.

In fact the exposition in this part of the book refers to the theoret-ical and principal essentials, including systems, methods and tech-nologies. Their specific application is further considered in the design and application of a complex of objects in Book 2 and in the construc-tion of the individual particular objects in Book 3. The presentation has an original structure. It corresponds to the

The presentation has an original structure. It corresponds to use current normative regulations and the possibilities afforded by the modern digital devices, instruments, systems and technologies. The book reflects to a large extent the views, long-term research, teaching experience and participation in the construction and inves-tigation of engineering objects, including with original spatial con-structive solutions of the authors.

The book can be used by lecturers, students and practitioners in The book can be used by lecturers, students and practice of the field of Engineering Surveying and all those who work on the construction and exploitation of engineering objects and their construction and exploitation of engineering objects and states and practice of the state complexes such as architects, civil engineers – constructors, and spe-cialists in the transport and water sector, etc., designers, contractors performing organization and control of construction and installation of technological equipment. Undoubtedly, it is recommended to do this, if necessary, at the same time with the other two books of the authors.

REVIEWERS

- Corr. Mem. Prof. D.Sc. Arch. Atanas Kovachev, Assoc. Prof. Dr.
- Eng. V. Kotzeva Prof. D.Sc. Eng. Georgi Valev Assoc. Prof. Dr. Eng. Todor Kostadinov

ISBN 978-619-90732-2-3 **Printed** edition pdf 978-619-90732-3-0

REVISED BOOK 2022

Editions of the book

The book "Basics, systems and teen nologies of engineering surveyns "Applied Geodesy" of authors, consist-ing of three parts he book "Basics, systems and tech-

 Engineering Surveying
Application of Geodesy in Earth sciences

3. Non-engineering and natural science aspects of application of geodesy.

The three parts together treat the comprehensive application of Sur-veying. The book is actually Book 2 of part 1 "Engineering Surveying" which is ready for printing in form of three boots.

1. Basics, systems and technologies of Engineering Surveying; 2. Design and implementation of struc

tural and master plans; 3. Construction of linear objects build-ings, structures, installation of techno-

logical equipment. Plans of built com-plex objects.

Book 1 is in a volume of 498 pages - text, formulas, tables and black -white and colorful figures in a format A4.

I is printed in Publishing house "Avan-gard" and can be bought in book-stores of the University of Architecture, Civil Engineering and Geodesy, SEC and Shining a torch. In digital form it is uploaded to the serve http://biblio.bg

of the e-bookstore Biblio.bg in pdf for-mat. The book is available up to page 22. The book is edition of the Union of Surveyors and Land Managers in Bul-garia.

Fig. 4. Book 2 poster

ANNOTATION

Books 3 of part 1. Engineering Geodesy of Applied Geodesy present the essence, tasks and role of Engineering Geodesy in the design, tracing, construction and operation of specific types of engineering objects. Juniar objects, buildings, facili-ties, and installation of technological equipment, plans, models and information systems of the built complex sites, etc.

D ue to the versatility of the treated problems and the large volume of exhibited material, exceeding 1500 computer pages, book 3 is divided into three books - 3 (3.1), 3 (3.2) and pages, ł 3 (3.3).

3 (3.3). Book 3 (3.1) presents the design, construction, operation and reconstruction of linear objects and the peculiarities of geo-detic works on railways, roads, energy supply sites, commu-nications, water supply and sewerage, cableways, as well as

B ook 3 (3.2) includes problems related to the design, con-struction and installation of facilities on other linear sites, Destruction and instantation of racinities on other infear sites, e.g. bridges, as well as geodetic methods and technologies for tracing and control measurements and the study of their de-formations. These problems are also presented at hydrotech-nical sites, built independently or in complexes of engineering ones - dams, cascades, etc., as well as hydro-ameliorative sites, river corrections, floods and droughts and ports.

 ${f B}$ ook 3 (3.3) presents the study, design, tracing and control, and study of deformations in the construction, in-B (3.1) proteins and y, design, tracing and constant of the stallation and operation of buildings, industrial facilities and technological equipment, installation of machinery for various purposes, as well as sites for civil purposes - airports, sport, high facilities, etc. The making of the plans and modeling of the constructed sites - BIM and the cadastre of communications of complexes of engineering sites and relevant information systems, respectively - Specialized data (model) of underground communications, and other engineering aspects of application are presented further.
F or the various sites, in the exposition 3 (3.1), 3 (3.2) and 3 (3.3), first of all, brief, specific information about their nature, construction, requirements, normative base and peculiarities is given. Thus, among other things, up-to-date engineering information and terminology are used and specialists speak the same language, especially since the issues under consideration are interdisciplinary.

REVISED BOOK 2022

NEW BOOKS 2022

Fig. 5. General poster of books 3

he structure of the books is orig- $T \ \ he structure of the books is original. The exposition is in accordance with the accepted way of exposition in books 1 and 2 of the authors,$ with the current regulatory frame-work and the opportunities offered by modern digital devices, tools, systems and technologies. It largely reflects the views, many years of research, teaching experience, participation in the construction and study of deforma-tions of engineering objects, includ-ing those with original spatial design

In a mose with organic spatial design solutions, implemented with the par-ticipation of the authors. **B** tooks 3 (3.1), 3 (3.2), 3 (3.3) are in-tended for professionals working on the construction (research, design, construction, installation) and opera-tion of surface contenents of the general tion of various engineering sites and complexes of them. Also for lecturers, doctoral students, students in the field of "Architecture, Civil Engineering and Geodesy", etc., as well as for practi-tioners in the field of construction, architecture, spatial planning and engi-neering geodesy.

Reviewers:

1. Corresponding Member Prof. Dr. A. Dr. Arch. Atanas Kovachev,

Assoc. Prof. Dr. Eng. Veneta Kotseva 2. Assoc. Prof. Dr. Eng. Todor Kostadinov 3. Assoc. Prof. Dr. Eng. Lachezar Hrischev 4. Dr. Eng. Ivan Kalchev Ivanov

ISBN 978-619-90732-4-7 print 978-ISBN 978-619-90732-4-7 print 978-619-90732-5-4 pdf ISBN 978-619-90732-6-1 (hardcover) ISBN 978-619-90732-8-5 (pdf) ISBN 978-619-90732-7-8 (hardcover) ISBN 978-619-90732-9-2 (pdf)

3. BOOKS

3.1. BOOK 1

Corr. Mem. Prof. Dr. Eng. GEORGI MILEV Hon. Prof. Dr. Eng. IVO MILEV

APPLIED GEODESY Part 1 ENGINEERING GEODESY

Book 1 BASICS, SYSTEMS AND TECHNOLOGIES OF ENGINEERING SURVEYING

Corr. Mem. Prof. Dr. Eng. GEORGI MILEV Hon. Prof. Dr. Eng. IVO MILEV

APPLIED GEODESY Part 1 ENGINEERING SURVEYING

Book 1 BASICS, SYSTEMS AND TECHNOLOGIES OF ENGINEERING SURVEYING

> Union of Surveyors and Land Managers in Bulgaria Sofia, 2017

Annotation

Book 1 treats the fundamentals of Engineering Surveying – the modern: investment process, normative base, geodetic basis (digital data, plans, maps and control networks), instruments, apparatuses and systems; reference and coordinate systems and surfaces, theoretical bases of geodetic measurement processing, algorithms and software, modern numerical geospatial technologies and their application in Engineering Surveying and related information systems. **The main issues of tracing** are presented: essence, elements, methods, technologies, accuracy, norms and cases; theoretical bases and practice in the control and determination of displacements and investigation of deformations of engineering objects, including in landslides.

In fact the exposition in this part of the book refers to the theoretical and principal essentials, including systems, methods and technologies. Their specific application is further considered in the design and application of a complex of objects in Book 2 and in the construction of the individual particular objects in Book 3.

The presentation has an original structure. It corresponds to the current normative regulations and the possibilities afforded by the modern digital devices, instruments, systems and technologies. The book reflects to a large extent the views, long-term research, teaching experience and participation in the construction and investigation of engineering objects, including with original spatial constructive solutions of the authors.

The book can be used by lecturers, students and practitioners in the field of Engineering Surveying and all those who work on the construction and exploitation of engineering objects and their complexes such as architects, civil engineers – constructors, and specialists in the transport and water sector, etc., designers, contractors performing organization and control of construction and installation of technological equipment. Undoubtedly, it is recommended to do this, if necessary, at the same time with the other two books of the authors.

REVIEWERS:

- 1. Corr. Mem. Prof. D.Sc. Arch. Atanas Kovachev, Assoc. Prof. Dr. Eng. V. Kotzeva
- 2. Prof. D.Sc. Eng. Georgi Valev
- 3. Assoc. Prof. Dr. Eng. Todor Kostadinov

ISBN 978-619-90732-2-3 Printed edition 978-619-90732-3-0 pdf

Preface

The book **"Basics, systems and technologies in Engineering Surveying"** is part of the **"Applied Geodesy"** project of the authors, consisting of three parts: **1. Engineering Surveying, 2. Natural scientific aspect of Geodesy application** and **3. Other applications of Geodesy**. The three together treat the versatile application of geodesy.

The book is actually the first part – Book 1 of Part 1. Engineering Surveying, which is prepared for press in the form of **3 books**, as Book 2 "Design and implementation of physical and general plans" – 330 pp., and has been already issued in digital [http://Billio.bg] and analogue form by the Union of Surveyors and Land Managers in Bulgaria and published by the Avangard Publishing House. As already noted in 02.7, Book 3 "Construction of linear objects, buildings, facilities, installation of technological equipment. Plans of the built complex objects" is also being prepared for printing.

The reason for releasing this part also as a separate book – Book 1, is the large volume of material on Engineering Surveying; the **specificity** and thematic differentiation of the problems; the **distinguishing, systematization, generalization and presentation** of modern achievements in this area, presented for the first time in the form of **systems, methods and technologies** (a basic inevitable element and prerequisite – theoretical and practical, for further realization in the particular engineering objects or their complexes); **the broad circle of professionals** working specifically in this area. Last but not least, this separate issuing will make the book much easily accessible for use. Its realization by means of the contemporary possibilities of digital publishing and application, including by mobile devices, is very favorable in this respect.

Along with this, however, there is a planned, immediate and inevitable connection between the treated herein matter and its concrete realization in the other two books of 1. Engineering Surveying. The application in construction is implied – the design, tracing and control during the building and installation of the different types of engineering objects and their complexes. This means that the three books represent a single organic entity – Engineering Surveying. Therefore, the whole numbering of titles, figures and tables, etc., is an inseparable part – an element of 1. Engineering Surveying. This also determines the inclusion of this book further on in a unified digital edition as 1. Engineering Surveying. Actually, as pointed out earlier, it has been included as an integral part of it.

In the reference literature dedicated to Engineering Surveying, in fact there are practically few specialized works devoted entirely to Engineering Surveying. However, there a lot more dedicated to the specific applications of Engineering Surveying. They have been reflected to a great extent, of course along with the current legal basis, in the proposed work.

The decimal numbering system is used in the book. Due to the large number of titles and their multiple stages, for the sake of clarity, simplification has been made here by introducing a double four-stage numbering as in our previously mentioned Book 2. It consists in the introduction of the conventional four-stage numbering with using, when necessary, a new additional four-stage numbering in the cases, when it has to be exceeded.

The authors acknowledge their gratitude to the Union of Surveyors and Land Managers in Bulgaria for the publication of the book under its auspices and for the cooperation and support during the preparation and realization of the book. We would like to thank also the reviewers: Corr. Mem. Prof. D.Sc. Arch. Atanas Kovachev, Assoc. Prof. Dr. Eng. Veneta Kotzeva, Prof. D.Sc. Georgi Valev and Assoc. Prof. Dr. Eng. Todor Kostadinov. We owe also gratitude to Prof. Dr. Eng. Borislav Marinov for the review and proposed amendments related to sections 1.3.3.4 and 1.3.3.6 of the books, to Prof. Dr. Plamen Malzhanski – for 1.3.3.10, to Prof. Dr. Eng. Keranka Vasileva – for 1.3.3.3 and 01 and 02, to Prof. D.Sc. Eng. Andrei Andreev – for 01 and 02.

Special thanks for the unreserved and active cooperation to Eng. Kristina Galabova for the preparation of the tables, formulas and most of the figures for press, as well as to Svetla Petrova and Eng. Ivanka Koleva for the elaboration of the cover of the book.

Sofia, July, 2017

The authors

CONTENTS

1. BASICS, SYSTEMS AND TECHNOLOGIES IN ENGINEERING SURVEYING

1.1. INVESTMENT PROCESS. CONTENTS AND ORGANIZATION OF THE RELATED GEODETIC WORKS

1.1.1. Essence

- 1.1.2. Geodetic works related to the investment process
- 1.1.2.1. Systematization of geodetic works
- 1.1.2.2. Expropriation of land for the needs of construction

1.2. LEGAL BASIS

- 1.2.1. Regulations
- 1.2.1.1. Contents of the Spatial Development Act and the regulations thereto
 - 1. Spatial Development Act
 - 2. Ordinances to the Spatial Development Act
- 1.2.1.2. Regulation of geodetic works
- 1.2.1.3. Contents of the Geodesy and Cartography Act and the regulations thereto
 - 1. Geodesy and Cartography Act
 - 2. Ordinances to the Geodesy and Cartography Act. Instructions
- 1.2.1.4. Contents of the Cadastre and Property Register Act and the regulations thereto
 - 1. Cadastre and Property Register Act
 - 2. Ordinances to the Cadastre and Property Register Act
- 1.2.1.5. Other laws and regulations
- 1.2.2. Standardization, systems and tolerances in geodetic works in construction
- 1.2.2.1. General provisions
- 1.2.2.2. Basic concepts in normalization and standardization
- 1.2.2.3. Systems for normalization and ways to create norms
 - 1. Based on the principle adopted in machine building
 - 2. Establishing standards based on the percentage of geodesic to construction or aggregate tolerance
 - 3. Principle of negligible influence
 - 4. Dimensional chains
 - 5. Control measurements of constructed objects
 - 6. System of norms without the use of building tolerances
- 1.2.2.4. Appropriate application of systems
- 1.2.2.5. Standards of the European Union
- 1.2.3. References 1.1 1.2
- 1.3. GEODETIC BASIS
- 1.3.1. Modern geodetic instruments, apparatuses, systems and devices. Software
- 1.3.1.1. Systematization and generalization
- 1.3.1.2. Sensors and sensor systems

1.3.2. GEODETIC REFERENCE SURFACES AND PROJECTIONS. REFERENCE COORDINATE, HEIGHT AND GRAVIMETRIC SYSTEMS AND NETWORKS

1.3.2.1. REFERENCE SURFACES

- 1. General principles
- 2. Geoid
- 3. Ellipsoid
- 4. Sphere
- 5. Plane

- 6. Deformations in transition from the Earth to the projection surfaces and the plane
- 7. Concepts, determinations and definitions
- 8. Heights and height systems and deviation from the plumb line

1.3.2.2. PROJECTIONS

- 1. Essence
- 2. Conformal projection of the sphere in the plane Gauss Krüger coordinates
- 3. UTM projection
- 4. Conformal conic Lambert projection
- 5. Stereographic projection
- 6. Grid lines and nomenclature of map sheets
- 7. Concepts, determinations and definitions
- 8. Heights and height systems and deviation from the plumb line

1.3.2.3. INTERNATIONAL REFERENCE SURFACES AND SYSTEMS

- 1. General principles
- 2. Geodetic reference system 1980
- 3. World geodetic system 1984
- 4. Earth gravitational model of the geoid
- 5. European project for gravimetry and geoid

1.3.2.4. REFERENCE COORDINATE SYSTEMS AND NETWORKS

- 1. Global Earth coordinate system and network
- 2. European regional coordinate system and network

1.3.2.5. EUROPEAN REGIONAL HEIGHT REFERENCE SYSTEM

- 1.3.2.6. WORLD AND EUROPEAN GRAVIMETRIC REFERENCE SYSTEM
- 1.3.2.7. Normative basis for introducing the international reference systems in Bulgaria
- 1.3.2.8. Coordinate systems, connections and transformations
 - 1. Generally on coordinate systems
 - 2. Definition of coordinate systems
- 1.3.2.9. Coordinate systems and projections in Bulgaria
- 1.3.2.10. Conventional geodetic networks used in engineering surveying
- 1.3.2.11. Modern geodetic networks in Engineering Surveying. GNSS networks
- 1.3.2.12. Design, construction, measurement and processing of the networks
- 1.3.2.13. Axial, polygon and levelling networks
- 1.3.2.14. Construction network
- 1.3.2.15. Gravimetric measurements and networks
- 1.3.2.16. References 1.3.1 1.3.2.15
- 1.3.3. NUMERICAL TECHNOLOGIES IN ENGINEERING SURVEYING
- 1.3.3.1. Generally on technologies. Geospatial technologies

1.3.3.2. GLOBAL INTERFEROMETRIC SYSTEMS AND NETWORKS

1.3.3.3. GLOBAL SATELLITE SYSTEMS FOR POSITIONING AND NAVIGATION

- 1. Generally, on systems
- 2. European global satellite navigation system GALILEO
- 2.1. Essence, goals and realizations
- 2.2. Component elements and application
- 2.3. Comparison with the other global navigation systems
- 2.4. Brief presentation of the other elements and functioning of global systems
- 2.4.1. Reference coordinate system
- 2.4.2. Measured magnitudes

- 2.4.3. Sources of errors and accuracy
- 2.4.4. Instruments
- 2.4.5. Methods of measurement
- 2.4.6. Determination of coordinates
- 2.4.7. Processing of data from GNSS measurements
- 2.5. Precise positioning of an individual point
- 2.6. Application of Global Systems

3. European differential geostationary system EGNOS (European Geostationary Navigation Overlay Service)

- 4. European differential system EUPOS (European Position Determination System)
- 4.1. General principles
- 4.2. Data for EUPOS
- 4.3. Technical specifications and services
- 4.4. BULiPOS
- 5. References 1.3.3.1 1.3.3.3

1.3.3.4. SATELLITE (REMOTE SENSING) TECHNOLOGIES

- 1. Principal concepts
- 2. Satellites, sensors, scanning and information
- 3. Types of remote sensing methods
- 4. Software for remote sensing investigations
- 5. Analytic bases and processing of satellite images
- 6. Brief overview of remote sensings
- 7. Application of LIDAR
- 8. Satellite radar interferometry
- 8.1. Essence
- 8.2. Additional possibilities of DInSAR
- 8.3. Interferometric software processing
- 8.4. Radar systems
- 8.5. Use of the systems
- 9. GOCE Special gravimetric satellite of the Earth
- 10. The Sentinel mission of the Copernicus program
- 11. References 1.3.3.4

1.3.3.5. PHOTOGRAMMETRIC TECHNOLOGIES

- 1. General ideas, basic concepts, definitions, principles and prerequisites for realization of photogrammetry
- 1.1. General ideas
- 1.2. Photogrammetric photo
- 1.3. Mathematical bases. General definitions and dependencies
- 1.4. Systematization of the data set and principles of processing
- 1.5. Analogue photogrammetry
- 1.6. Analytical photogrammetry
- 1.7. Digital photogrammetry
- 1.7.1. Basic information
- 1.7.2. Processing of digital image information
- 1.7.3. Block adjustment of the model
- 1.7.4. Bundle-block adjustment
- 1.7.5. Orthogonal photos (Orthophoto)
- 2. Technology of airborne digital photogrammetry using normal shots
- 2.1. Principle

- 2.2. Control points
- 2.3. Flying
- 2.4. Performance of aerial survey
- 2.5. Preparation of data from the shots
- 2.6. Direct georeferenced (coordination)
- 2.7. Aerial triangulation
- 2.8. Height model
- 2.9. Creating orthophotoshots
- 3. AERIAL TRIANGULATION ACCORDING ON PROJECTION CENTERS AND ULTRACAMD DIGITAL CAMERA
- 3.1. General principles
- 3.2. DGNSS BULiPOS
- 3. 3. Adjustment of the block for aerial triangulation
- 3.4. Results and accuracy
- 3.5. Inferences and conclusions
- 4. OBLIQUE AERIAL PHOTOS. PICTOMETRY ESSENCE AND APPLICATIONS
- 4.1. Essence
- 4.2. Application
- 5. UNMANNED AERIAL PHOTOGRAPHY
- 5.1. General information
- 5.2. UNMANNED AERIAL VEHICLES AND PERFORMANCE OF SHOOTING
- 5.3. Photo processing
- 5.3.1. Automatic aerial triangulation
- 5.3.2. Block adjustment of ray bundles
- 5.3.3. Calculation of a point cloud
- 5.3.4. Generation of an orthophoto mosaic and a digital surface model
- 5.4. Assessment of the possibilities and use of UAV (Unmanned_Aircraft Vehicle) 6. References 1.3.35

1.3.3.6. AIRBORNE LASER SCANNING

- 1. Essence
- 2. Principles for performing laser scanning
- 3. Project and flight plan for airborne scanning
- 4. Geodetic basis. Georeferencing
- 5. Requirements for laser scanning
- 6. Performance of airborne scanning
- 7. Software and data processing
- 8. Control of laser scanning. Control sections
- 9. Data transmission
- 10. An airborne laser scanning system TOPEYE a topographic laser
- 11. Laser scanning of underwater relief
- 12. Areas of LIDAR application
- 13. References 1.3.3.6

1.3.3.7. SPECIAL APPLICATIONS OF AIRBORNE TECHNOLOGIES

- 1. Three-dimensional models
- 2. Geo-server of Blom
- 3. IMAGE INTERPRETATION
- 3.1. General principles
- 3.2. Main features for digital image interpretation

- 3.2.1. General principles
- 3.2.2. Tone and color
- 3.2.3. Size
- 3.2.4. Shape
- 3.2.5. Height
- 3.2.6. Shade
- 3.2.7. Structure
- 3.2.8. Texture
- 3.2.9. Location
- 3.2.10. Association
- 3.2.11. Time
- 3.3. Conclusion
- 4. References 1.3.3.7

1.3.3.8. TERRESTRIAL DIGITAL PHOTOGRAMMETRY

- 1. General principles
- 2. Technical tools, recording and processing
- 3. Application
- 1.3.3.8-4. References 1.3.3.8

1.3.3.9. TERRESTRIAL LASER SCANNING

- 1. General principles
- 2. Laser scanners for terrestrial scanning
- 3. Classification of laser scanners
- 4. Performing laser scanning
- 5. Definitions and explanations of concepts and activities
- 6. Errors in laser scanning
- 7. Georeferencing of the point cloud
- 8. Preliminary and subsequent data processing and first products
- 9. Importance and areas of application
- 10. References 1.3.3.9

1.3.3.10. TERRESTRIAL RADAR INTERFEROMETRY

- 1. Essence
- 2. Systems for terrestrial radar interferometry
- 3. Characteristics of GPRI
- 4. Measurements and processing
- 5. Areas of application of terrestrial radar interferometry
- 6. References 1.3.3.10

1.3.3.11. IMPROVEMENT OF TRADITIONAL TERRESTRIAL TO NUMERICAL SPATIAL TECHNOLOGIES

- 1. General principles
- 2. Numerical tachymetry
- 2.1. Tachymetry using an electronic tachymeter
- 2.2. Tachymetry using a geodetic robot
- 2.3. Satellite tachymetry

1.3.3.12. RANDOMLY SELECTED STATION - SURVEY AND **SETTING OUT** WITH AN ELECTRONIC TACHYMETER

1. Essence

- 2. Determination of new points by randomly selected station using two or more given points
- 1.3.3.13. INTEGRATED MULTIFUNCTIONAL SYSTEMS AND TECHNOLOGIES (PHOTO, SETTING OUT, CONTROL AND MANAGEMENT OF CONSTRUCTION MACHINES)
- 1.3.3.14. SPECIALIZED SOFTWARE
 - 1. References 1.3.3.11 1.3.3.14

1.3.3.15. INFORMATION SYSTEMS. GIS

- 1. Definitions
- 2. GIS elements
- 2.1. Hardware
- 2.2. Software
- 2.3. Frames
- 2.4. Database
- 2.4.1. Types of data in GIS
- 2.4.2. A set of different types of data
- 2.4.2.1 Original set of spatial data
- 2.4.2.2. Secondary set of spatial data
- 2.5. Data quality
- 2.6. Updating
- 2.7. Data modelling
- 2.8. Data conversion
- 2.9. Data topology
- 2.10. Layers
- 2.11. Metadata
- 2.12. Import and export of data. Formats
- 3. Maps
- 3.1. Numerical cartography
- 4. Models
- 4.1. Digital model of relief (terrain) DTM
- 5. Concept of GIS
- 5.1. Sources and information for GIS
- 5.2. Coordinate systems and Map projections in GIS. Georeferencing
- 6. Areas of GIS application
- 6.1. Spatial information system (RIS)
- 6.2. Information systems in Engineering Surveying and Applied Geodesy
- 6.3. GS of the Bulgarian Army
- 6.4. Specialized system Acstre 2012
- 6.5. Geographic information system GISExplorer. NextGIS technologies OOD
- 6.6. Other GIS
- 7. Effectiveness of GIS use
- 8. From desktop GIS to WEB-based GIS Cloud Computing
- 9. References 1.3.3.15
- 1.3.3.16. APPLICATION OF GEOSPATIAL TECHNOLOGIES IN ENGINEERING SURVEYING
- 1.3.4. MAPS AND PLANS
- 1.3.4.1. Principal ideas
- 1.3.4.2. Production of cadastral maps and cadastral registers
- 1.3.4.3. Removal of incompleteness and errors in the cadastral map

- 1.3.4.4. Software
- 1.3.4.5. References 1.3.4
- 1.3.5. THEORETICAL BASES OF GEODETIC MEASUREMENT PROCESSING
- 1.3.5.1. General and specialized cases of adjustment
 - 1. Mathematical model of the measurements
 - 2. Stochastic model
 - 3. Functional model
 - 4. General case of adjustment of correlated observations
 - 5. Particular cases of adjustment
- 1.3.5.2. Application of the least square method for solving variational problems in mechanics. Comparison of the functions of Laplace in geodesy and mechanics
- 1.3.5.3. Analysis of the adjustment model on the principle of accuracy assessment of geodetic networks
- 1.3.5.4. Algorithm for adjustment of precise three-dimensional geodetic networks. Software
- 1.3.5.5. References 1.3.5

1.4. BASICS OF SETTING OUT AND CONTROL

- 1.4.1. General on setting out and control
- 1.4.2. Basic elements of setting out
- 1.4.3. METHODS OF SETTING OUT
- 1.4.3.1. General principles
- 1.4.3.2. Conventional methods of 2D setting out
 - 1. By orthogonal coordinates orthogonal method
 - 2. By polar coordinates setting out according to angle and length
 - 3. By intersection
 - 4. By resection
 - 5. Setting out by polygon
- 1.4.3.3. Expanded 2D methods and methods for direct 3D setting out
 - 1. Combination of setting out according to the polar method and trigonometric determination (setting out) of the project point elevation
 - 2. 3D polygon
 - 3. Setting out by laser instruments
 - 4. Setting out from randomly selected station
 - 4.1. Two-dimensional setting out from randomly selected station
 - 4.2. Spatial (3D) setting out from randomly selected station
 - 4.3 Setting out using GNSS
- 1.4.4. Requirements for accuracy, norms and preparation of setting out
- 1.4.4.1. Requirements for accuracy and norms
- 1.4.4.2. Preparation of setting out

1.4.5. **SETTING OUT** OF STRAIGHT LINES. CASES

1.4.6. SETTING OUT OF CURVES

- 1.4.6.1. General principles
- 1.4.6.2. Determination and setting out of the main points of circle arcs
- 1.4.6.3. Determination and setting out of detailed points of circle arcs
- 1.4.6.4. Reverse curve
- 1.4.6.5. Basket curve
- 1.4.6.6. Serpentines
- 1.4.6.7. Transition curves
 - 1. Principal ideas
 - 2. Cases

- 3. Cubic parabola
- 4. Clothoid or radial spiral
- 5. Other transition curves
- 1.4.6.8. Vertical curves
- 1.4.6.9. Setting out of horizontal, vertical and inclined straight lines, planes and surfaces
 - 1. Basic idea
 - 2. Horizontal, vertical and inclined straight lines
 - 3. Horizontal, vertical and inclined planes
 - 4. Surfaces
- 1.4.6.10. References 1.4

1.5. INVESTIGATION OF DISPLACEMENTS AND DEFORMATIONS. LANDSLIDES

- 1.5.1. Brief information on deformations and methods for their investigation
- 1.5.2. DETERMINATION OF HORIZONTAL DISPLACEMENTS
- 1.5.2.1. Trigonometric method. Geodetic networks
- 1.5.2.2. Measurement processing. Stability. Displacements
 - 1. Measurement processing. Determination of point displacements
- 1.5.2.3 Polygonometric method
- 1.5.2.4. Range method

1.5.3. DETERMINATION OF VERTICAL DISPLACEMENTS

- 1.5.3.1. Geometric levelling
 - 1. Principal ideas
 - 2. Initial (basic) benchmarks
 - 3. Control benchmarks
 - 4. Instruments and measurements
 - 5. Accuracy
 - 6. Processing of the levelling results
- 1.5.3.2. Trigonometric levelling
 - 1. Characteristics and capabilities
 - 2. Signalization and measurement of zenith angles and distances
- 1.5.3.3. Hydrostatic levelling
 - 1. Essence, hydrostatic levels and measurements
 - 2. Hydrostatic systems
 - 3. Advantages and disadvantages
- 1.5.4. SIMULTANEOUS DETERMINATION OF THE HORIZONTAL AND VERTICAL DISPLACEMENTS. OTHER SOLUTIONS
- 1.5.4.1. Three-dimensional networks and methods
- 1.5.4.2. Photogrammetric method. Scanning
- 1.5.4.3. Satellite radar interferometry
- 1.5.4.4. GNSS

1.5.5. SEMI-GEODETIC METHODS FOR INVESTIGATION OF DEFORMATIONS

- 1.5.5.1. Brief characteristics
- 1.5.5.2. Measurement with plumbing
 - 1. General data
 - 2. Straight mechanical plumb line
 - 3. Reverse mechanical plumb line
 - 4. Modern straight and reverse plumb lines
 - 5. Optical plumb line
- 1.5.5.3. Measurement of the inclination angle and its variation
- 1.5.5.4. Displacement measurement

- 1.5.5.5. Instruments and methods for permanent investigation of deformations
 - 1. General information
 - 2. Gauges Sensors
 - 3. Instruments for permanent measurement
 - 4. Automated permanent measurement systems
 - 5. Processing of registered data

1.5.6. ANALYSIS OF DISPLACEMENTS

- 1.5.6.1. Basic principles
- 1.5.6.2. Methods of analysis
- 1.5.6.3. Simultaneous adjustment, stability analysis and determination of displacements
 - 1. General on the solutions
 - 2. Geonet systems
 - 2.1. Principal ideas
 - 2.2. Network adjustment and accuracy determination
 - 2.3. Determination of invariant elements
 - 2.4. Establishment of stable points
 - 2.5. Determination of point displacements
 - 2.6. Direct comparison of the adjusted coordinates
 - 2.7. Program realization
 - 3. Geolevel system
 - 3.1. Principal ideas
 - 3.2. Algorithm of the proposed solution
 - 3.3. Geolevel program realization

1.5.7. INTERPRETATION OF DISPLACEMENTS

- 1.5.7.1. General ideas
- 1.5.7.2. Determination of further analytical characteristics for studying the regularities and dynamics of displacements
- 1.5.7.3. Establishing the relationship between displacements, time and physical parameters
- 1.5.7.4 Approximation of individual point displacements
- 1.5.7.5. Interpretation of individual point displacement as a function of two or more factors
 - 1. Influence of only two factors
 - 2. Influence of more factors
- 1.5.7.6. Prediction
- 1.5.7.7. Investigation of the physical correlation between point displacements
- 1.5.7.8. Determination of total deformations of the studied object

1.5.8. THEORY OF DEFORMATIONS

- 1.5.8.1. Investigation of the stressed and strained state of bodies using geodetically determined displacements
 - 1. General ideas
 - 2. Parametric representation of the field of displacement vectors
 - 3. Determination of the tensors of deformation, stress and other functionals of the displacement vector field

1.5.9. LANDESLIDES

- 1.5.9.1. General data on landslides
- 1.5.9.2. Brief characteristics of landslides and the role of the methods for their investigation
- 1.5.9.3. Essence of the geodetic methods for investigation of landslide processes
 - 1. General characteristics
 - 2. Essence and specific features
 - 2.1. Application of the range method

- 2.2. Trigonometric and polygonometric method
- 2.3. Precise trigonometric levelling and its integration in geodetic networks for studying deformations
- 3. Three-dimensional (mathematical) models
- 3.1. Algorithm
- 3.2. Experimental studies for using precise trigonometric levelling with larger distances and height differences
- 4. Analysis of displacements in landslides
- 5. Analytical characteristics of the landslide process
- 6. Determination of the regularities and dynamics of the landslide process and further interpretation of displacements
- 6.1. Determination of the regularities and dynamics of the landslide process
- 6.2. Probabilistic-statistical interpretation of geodetic data
- 7. An example for area and discrete landslide treatment
- 1.5.10. REQUIREMENTS AND ORGANIZATION OF THE STUDIES ON LANDSLIDE DEFORMATIONS
- 1.5.10.1. General notes and research project
- 1.5.10.2. Position of the reference and control points and benchmarks
- 1.5.10.3. Requirements and accuracy of measurements
- 1.5.10.4. Performance of measurements
- 1.5.10.5. Form and presentation of research results
- 1.5.10.6. Assessment of the state and use of geodetic methods and organization of deformation research on landslides in Bulgaria
- 1.5.11. References 1.5

Cor. Mem. Prof. Dr. Eng. Georgi Milev. Graduate of the University of Architecture, Civil Engineering and Geodesy (UACEG), Sofia (1956). In 1960 – Research Associate in the Bulgarian Academy of Sciences (BAS). In 1976 – Associate Professor, 1985 – Professor, 2008 – Cor. Mem. of BAS. Since 1988 – Cor. Mem. of the Bavarian Academy of Sciences, Germany. In 1973 – defended a PhD thesis in the Stuttgart University. Since 2001 – lectures to the students on Geodesy and Engineering Geodesy in UACEG, German lingual education.

The scope of his diverse and efficient activities is significant – scientific, applied research, scientificorganizational, educational, international, promotional, publishing, inventive, expert, scientific managerial and

implementation. Basically, these activities were carried out in BAS, the Federation of Scientific Technical Unions in Bulgaria (FSTUB), the Union of Scientists in Bulgaria, UACEG and other institutions in Bulgaria and in international organizations and projects, mostly on an interdisciplinary ground.

The scientific activity of Prof. Milev covers both aspects of geodesy – natural and engineering. The number of his publications exceeds 580, of them 14 monographs, 9 studies, 5 textbooks, 26 editing and publishing of scientific proceedings, 120 scientific papers, 243 scientific reports, etc. He was awarded by Stuttgart University for high scientific achievements of his thesis (1973).

Prof. Milev is honorary member of the International Federation of Surveyors (FIG), FSTUB and others. He had been a chairman of the Union of Surveyors and Land Managers in Bulgaria since 1990 for 24 years and later – its honorary chairman. He is Editor in chief of the Geodesy, Cartography and Land Management magazine since 1997. Mamber of BAS. Space reacerch and Technology Institute.

Hon. Prof. Dr. Eng. Ivo Milev graduated geodesy and mine surveying at the University of Mining and Geology, Sofia in 1991. He defended his PhD thesis in 2000 at the Technical University, Berlin – direction Construction and Geodesy.

He works in both aspects of geodesy – engineering and natural, but mainly in the area of Applied Geodesy – Engineering Surveying. This includes primarily the development of theory, software and application of adjustment – processing the results of geodetic measurements; GNSS – theory, software and application, alone and combined with data from other measurements; theory and software and application in the study of deformations of engineering objects – buildings and facilities, and the terrains for their situation; modern techniques of measurement – electronic tachometry, laser scanning and others, development, software

and application. Special attention is paid to transport objects, particularly to railroad parameters. He has registered two patents associated with his name in implementing the system of the Leika Concern Geosystems.

He was: expert of UN – OOSA on reference systems; member of the Steering Committee of EUPOS (EUropean Positioning Determination System); chairman of Working Group Private Services RTCM SC 104 (Radio Technical Commission for Maritime Services); guest professor at Beuth University of Applied Sciences in Berlin, East Kazakhstan Technical University, State Technical University of Kazakhstan and Siberian State Geodetic Academy.

Prof. Ivo Milev is a member of Working Group 4 Engineering Surveying of the Union of German Surveyors; Chairman of Commission 6 Engineering Geodesy of the International Federation of Surveyors for the period 2013-2017. He is an Executive Director of technet-rail GmbH. He is Honorary Prof. of the Siberian State Geodetic Academy, Russia and of the Technical University of Dresden, Germany.

Corr. Mem. Prof. Dr. Eng. GEORGI MILEV Hon. Prof. Dr. Eng. IVO MILEV

APPLIED GEODESY Part 1 ENGINEERING GEODESY

RDCAL

Book 2 DESIGN AND IMPLEMENTATION OF PHYSICAL AND GENERAL PLANS

Union of Surveyors and Land Managers in Bulgaria Sofia, 2017 Corr. Mem. Prof. Dr. Eng. GEORGI MILEV Hon. Prof. Dr. Eng. IVO MILEV

APPLIED GEODESY Part 1 ENGINEERING GEODESY

Book 2 DESIGN AND IMPLEMENTATION OF PHYSICAL AND GENERAL PLANS

Union of Surveyors and Land Managers in Bulgaria Sofia, 2017, revised 2022

Annotation

Interdisciplinary problems related to the development of territories – development schemes, physical and general plans of a complex of objects – industrial enterprises, airports, etc., are presented along with the role of geodesy and the contribution of land surveyors to their realization. The major emphasis is laid on the technology of design and implementation of regulation plans, general plans and schemes and drafts for vertical planning. Moreover, the problems are treated from an interdisciplinary point of view and in the context of the modern possibilities of: digital design, geospatial technologies, using of global navigation satellite systems, electronic systems for data measurement and processing, tracing and monitoring, geoinformation systems, use of modern digital cadastre and others. Along with this the exposition is based and reflects, insofar as possible, the huge current normative and subordinate basis – laws, rules, regulations, instructions, guidelines, etc., and it has become necessary in some cases to cite directly some major aspects of it. However, this basis is dynamically developing and its actual state should be always accounted for. A number of real practical examples of physical planning of territories are also included. The long-year work and experience of the authors are also reflected.

Undoubtedly such a broad spectrum of issues cannot be exhaustively considered in all its aspects. A balance has been sought for in the structure of the book and exposition to present the main problems and the emphasis is put on the aspects related more directly to the activities of surveyors in the area of physical planning.

The book is intended primarily for surveyors. However, because of the interdisciplinary nature of the problems and the manner of exposition, it can be very useful for a broad circle of specialists – architects, engineers, lawyers and others working on the issues of physical planning. The benefits may be for the lecturers and all studying these problems, workers in the municipalities and courts, and in the design and construction in this area, owners of land estates and many others.

Sofia, 2017, revised 2022

The authors

REVIEWERS:

- 1. Corr. Mem. Prof. D.Sc. Arch. Atanas Kovachev, Assoc. Prof. Dr. Eng. V. Kotzeva
- 2. Prof. Dr. Eng. Ilinka Ivanova
- 3. Assoc. Prof. Dr. Eng. Todor Kostadinov

ISBN 978-619-90732-1-6 ISBN 978-619-90732-0-9 (ED. № 978-619-90732)

Preface

The book "Design and implementation of physical and general plans" is part of the "**Applied Geodesy**" project of the authors, consisting of two parts: 1. Engineering Geodesy and 2. Other Applications of Geodesy (not engineering applications of geodesy), both of them treating the comprehensive application of geodesy. The book is actually composite – the second part of 1. Engineering Geodesy is prepared for printing in the form of **3 books**.

The reason to issue this part as a separate digital book is on the one hand the specificity and thematic differentiation of the problems of physical planning and on the other hand – the tradition in its presentation and teaching till now, and most importantly – its wide application and broad circle of specialists working specifically and only in this area. And last but not least, its separate edition will make it more accessible for use. Its realization by means of the modern possibilities of digital publishing and use, including by mobile devices, is also very favorable.

Along with this, there is planned, direct and inevitable connection of the material treated herein with the other parts – books of Engineering Geodesy. These are the fundamentals of Engineering Geodesy, basics and principles related to tracing, investigation of deformations, cadastre and information systems, etc. Also – specific problems related to construction – design, tracing and monitoring during the construction and assembly of various types of engineering objects, built in (or mostly in) the settlements and industrial and other complexes. This determines the inclusion of this book further on in a unified digital edition as 1. Engineering Geodesy. Actually, as already mentioned, it has been originally included as an integral part of it. Therefore the whole numbering of titles, figures and tables, etc., is an indivisible part – an element of 1. Engineering Geodesy.

In the literature dedicated to physical planning, focused at regulation plans, general plans, vertical planning and the geodetic aspects of their design and implementation, there are practically few fundamental works and some of them are relatively outdated in terms of - legislation, technologies of development and application. All of them, along with the current legislative basis, and many others, of course, have found reflection in the proposed work.

The book contains many examples from practice, including from real projects, fragments of them, together with the symbols used. It has to be noted that regardless of the existing Regulation No 8 from 2001 [28] there are differences in the symbols applied. There are also differences between the symbols for settlements and industrial enterprises, airports and other complex objects for one and the same type of objects. The difference is also enhanced by the fact that the available symbols in the Regulation for symbols in general plans are not intended for automated drawing and software designers develop and use new symbols. New updating and unification of the symbols for physical planning are necessary. Obviously **alteration and unification of symbols** should be introduced in order to use them throughout the country and in **the different types of physical and general plans**, as well as bring them to a form suitable for digital design and development of plans.

Maybe this is the place to point out the fact that there are many common aspects of the role of the two sciences – architecture and geodesy, in life and practice. In fact both architecture and geodesy contribute except to solving their own problems also to solve basic problems of other sciences and fields of knowledge and life.

The decimal system of numbering is used in the book. Due to the great number of title levels, for better clarity, certain simplification is applied here by introducing double four-level numbering. It is expressed in the introduction of conventional four-level numbering, and when it has to be exceeded – introducing a new additional four-level numbering where necessary.

The authors acknowledge the gratitude a number of colleagues and professionals for the cooperation and assistance in the preparation and realization of this book.

Sofia, 28.09.2016, revised 2022 The authors
CONTENTS

2. DESIGN AND APPLICATION OF PHYSICAL AND GENERAL PLANS

- 2.1. Generally on physical planning and physical and general plans and the role and contribution of geodesy and surveyors
- 2.1.1. Essence and realization
- 2.1.2. Role and contribution of geodesy and surveyors in the physical planning of territories

2.2. PHYSICAL PLANS

2.2.1. GENERAL PHYSICAL PLAN

2.2.2. DETAILED PHYSICAL PLANS

- 2.2.2.1. Generally, for the detailed physical plans (DPP)
- 2.2.2.2. Scope, type, nature and contents of the detailed physical plans
- 2.2.2.3. Normative provisions for regulation and construction of territories and estates
- 2.2.2.4. Vertical planning as part of detailed physical plans and correspondence between the plans for horizontal and vertical planning
- 2.2.2.5. Transport-communication projects and plans to the detailed physical plans
- 2.2.2.6. Plot plans of the non-residential technical infrastructure. Easement zones
 - 1. Nature, design and application
 - 2. Easement zones
 - 3. Specialized computer development of plot plans
- 2.2.2.7. Other plans and project elements of detailed physical plans
- 2.2.2.8. Development, technical execution, approval, modification and control of physical plans

2.2.3. TECHNOLOGY OF DESIGN AND APPLICATION OF REGULATION PLANS

- 2.2.3.1. OBJECT AND GENERAL DATA FOR DESIGN OF REGULATION PLANS 1. Settlements
 - 2. Initial data and materials for design of regulation plans (RP)
 - 2.1. Terms of reference for design
 - 2.2. Cadastre
 - 2.2.1. Nature, object, scope and objectives of cadastre
 - 2.2.2. Contents of the cadastral map and cadastral registers
 - 2.2.3. Identifier of real estates
 - 2.2.4. Property registers
 - 2.2.5. Normative basis and coordinate system of cadastre
 - 2.2.6. Cadastre-Detailed physical plan relationship
 - 2.3. General physical plan (GPP) and data from feasibility studies
 - 2.4. Maps, plans and other digital data
 - 2.4.1. General
 - 2.4.2. Possibilities of using the technology for unmanned aerial photography
 - 2.4.3. Application of aerial and satellite photogrammetric methods and technologies in physical planning
 - 3. Order, sequence and methods for design of regulation plans
- 2.2.3.2. CHARACTERISTICS OF STREETS AND STREET NETWORKS. DESIGN OF STREET REGULATION
 - 1. Generally for streets and street network
 - 2. Classification of the street network
 - 3. STREET ELEMENTS
 - 3.1. Structural elements along the street width
 - 3.1.1. Basic structural elements
 - 3.1.2. Standard transverse street profiles. Norms
 - 3.1.3. Dimensions

3.1.4. Underground and overground street facilities and engineering-technical networks

3.2. Typical street lines

3.2.1. General data

3.2.2. Street axis

3.2.3. Curb lines

3.2.4. Street regulation lines

3.2.5. Construction lines

3.2.6. Longitudinal street slope

4. STREET REGULATION AND ITS DESIGN

4.1. General provisions

4.2. Regulation of straight street sections

4.2.1. General

4.2.2. Specific cases in the regulation design of straight street sections

4.3. Regulation of curve street sections, can't and lay-bys

4.3.1. Arc of a circle

4.3.2. Transitional curves of streets

4.3.3. Can't and lay-bys of streets in curve street sections

4.3.3.1. Can't

4.3.3.2. Lay-bys

4.3.4. Specific cases in the regulation design of curve street sections

4.3.5. Principles in the design of axial and street regulation lines

4.4. STREET NETWORKS

4.4.1. Schemes of street networks

4.4.2. Requirements for the design of street networks in the regulation plan

4.5. Examples of designed street regulation

4.6. Project for tracing of street regulation

5. STREET INTERSECTIONS AND JUNCTIONS. PARKING LOTS AND GARAGES

5.1. STREET INTERSECTIONS

5.1.1. Definition and general provisions

5.1.2. Classification and elements

5.1.3. Visibility

5.1.4. Rounding of sidewalks

5.1.5. Example

5.2. STREET JUNCTIONS

5.2.1. Definition and general provisions

5.2.2. Classification of street junctions

5.2.3. Elements of street junctions

5.2.4. Basic requirements in the vertical planning of street intersections and junctions 5.2.5. Examples

5.3. PARKING LOTS AND GARAGES

2.2.3.3. CHARACTERISTICS OF SQUARES AND DESIGN OF THEIR REGULATION

1. Definition and general provisions

2. Classification of squares

2.1. Nature and purpose

2.2. Shape

2.3. Dimensions of squares

3. Design of squares in the regulation plan

4. Examples of square design

2.2.3.4. DESIGN OF QUARTER REGULATION

- 1. Definition and general provisions
- 2. Classification of quarters
- 3. Refining the regulation framework of quarters
 - 3.1. Principal provisions
- 3.2. Analytical determination of the vertices of quarter framework
- 4. Examples of quarter design

2.2.3.5. REGULATION OF LAND ESTATES

- 1. Principal provisions
- 2. Classification and characteristics of regulated land estates
- 2.1. Classification and characteristics of land estate parameters
- 2.2. Classification and characteristics of construction in regulated land estates 2.3. Additional regulation of the type of construction
- 3. Design of regulated land estates
- 3.1. Principal provisions
- 3.2. Formation and shaping of regulated land estates

4. Obligatory normative and legal provisions in the development of projects for regulation of land estates

- 4.1. Normative provisions
- 4.2. Legal provisions

2.2.3.6. DESIGN OF DEVELOPMENT AND REGULATION OF OTHER PARTS OF SETTLEMENTS

2.2.3.7. FORMATION OF THE REGULATION PLAN. RECORDING IN A DIGITAL FORM

- 1. Requirements and rules
- 2. Symbols
- 3. Project layout
- 3.1. Drawing
- 3.2. Coloring
- 3.3. Numbering
- 3.4. Examples of layout
- 4. Recording in digital form

2.2.3.8. PROMULGATION, COORDINATION AND APPROVAL OF REGULATION PLANS

- 1. Promulgation
- 2. Coordination
- 3. Approval

2.2.3.9. APPLICATION OF REGULATION PLANS

- 1. General
- 2. Expropriation

3. Initial projects, documents, data and definitions related to the application of regulation plans, tracing respectively

3.1. Construction boundaries of settlements

- 3.2. Investment projects
- 3.3. Buildings permits
- 3.4. Sketch of a land estate
- 3.4.1. Issuing sketches from the approved regulation plan
- 3.4.2. Composite sketches
- 3.5. Design visa
- 3.6. Copy of underground cadastre
- 4. Requirements, preparation and tracing of the regulation plan

- 4.1. Requirements and accuracies
- 4.2. Geodetic base reference network, methods
- 4.2.1. General for settlement geodetic base
- 4.2.2. Axial and leveling network
- 4.2.3. Modern geodetic networks
- 4.3. Tracing methods
- 4.4. Composition of projects, plans and sketches for tracing
- 4.5. Tracing of elements of the regulation plan
- 4.5.1. Tracing of street regulation lines and quarter street frames
- 4.5.1.1. Projects for tracing of street regulation lines and quarter street frames
 - 1. Generally on projects
 - 2. Files and directories with data for tracing points of a quarter and other points
 - of street regulation lines
- 4.5.2. Tracing of other parts of the regulation plan
- 4.5.3. Tracing the boundaries of land estates
- 4.5.3. Composing files and directories and tracing of land estates
- 4.5.4. Tracing of buildings, facilities and communications
- 4.5.4.1. General
- 4.5.4.2. Giving construction line
- 4.5.5. Documents related to tracing and monitoring
- 4.5.6. When a regulation plan is considered to be applied to land estates?
- 5. Access to numerical data related to the **application** of cadastre and regulation plans AGCC-CAIS

2.2.3.10. AMENDMENTS AND MAINTENANCE OF REGULATION PLANS

- 1. Amendments of regulation and other physical plans and related procedures
- 1.1. Amendments of RP due to amendment of GPP and DPP (Article 134 of the Law on

Physical Planning, LPP)

- 1.2. Other cases of RP amendment
- 1.3. Examples for amendment of parts of DPP
- 2. Property, partitioning and merging of regulated land estates
- 2.1. Property. Types. Protection of property
- 2.2. Partitioning of land estates
- 2.3. Merging of land estates

3. Maintenance of cadastral maps and registers, regulation and other detailed physical plans

3.1. Maintaining cadastral maps and cadastral and property registers of regulation and other detailed physical plans

3.1.1. Legal provisions

- 3.1.2. Cases of maintaining and completing the cadastral map
- 3.1.3. Removal of incompleteness and errors in the cadastral map
- 3.1.4. Amendment of cadastral maps and cadastral registers when establishing omissions and errors

3.2. Organization of maintenance and updating of cadastral plans, maps and registers

- 3.2.1. Organization and updating
- 3.2.2. Realization in Sofia municipality
- 3.2.3. Sub-normative basis of cadastre for its maintenance
- 3.3. Maintenance of regulation plans and other detailed physical plans

2.3. GENERAL PLANS OF INDUSTRIAL ENTERPRISES AND COMPLEXES OF OTHER ENGINEERING OBJECTS

- 2.3.1. General problems in the design and construction of industrial enterprises and other complexes of engineering objects
- 2.3.2. Nature, contents and types of general plans
- 2.3.3. Factors and requirements affecting the design of industrial enterprises and their general plans
- 2.3.4. Components of the project general plan
- 2.3.5. Location of objects in the design of the general plan
- 2.3.6. Coordination of objects in the general plan
- 2.3.7. Symbols and formation of the general plan
- 2.3.8. Digital design of the general plan composition
- 2.3.9. Application of general plans

2.4. VERTICAL PLANNING

- 2.4.1. GENERAL PROBLEMS OF VERTICAL PLANNING
- 2.4.1.1. Nature, principle and features of vertical planning
- 2.4.1.2. Methods of vertical planning and selection of project elevations and surfaces
- 2.4.1.3. Calculating the volume of earth masses
 - 1. Calculating the volume of earth masses using profiles
 - 2. Calculating the volume of earth masses using horizontals
 - 3. Calculating the volume of earth masses using cartograms
 - 4. Balance and replacement of earth masses
 - 5. Other methods and solutions
- 2.4.1.4. General problems in the drainage of built-up areas
 - 1. General provisions
 - 2. Method of localizing the places of rain receivers
 - 3. Implementation of the method of localizing the places of rain receivers
 - 4. Disposition of rain-receiver shafts
- 2.4.2. VERTICAL PLANNING OF INDUSTRIAL ENTERPRISES
- 2.4.2.1. General provisions
- 2.4.2.2. Conceptual (preliminary) project choice of a scheme and system and order of vertical planning
- 2.4.2.3. Choice of project elevations
- 2.4.2.4. Work project detailed planning
- 2.4.3. VERTICAL PLANNING OF SETTLEMENTS
- 2.4.3.1. General provisions
- 2.4.3.2. Conceptual (preliminary) project for vertical planning of settlements. Technical project 1. General
 - 2. Conceptual (preliminary, schematic) project for vertical planning (plan-scheme). Leveling project
 - 3. Longitudinal and transverse street profiles
 - 4. Combining vertical curves from the longitudinal profile and horizontal curves from the situation plan
 - 5. Requirements and conditions
 - 6. Determining the volume of earth masses
 - 7. Explanatory note with a corresponding bill
- 2.4.3.3. Work (final) project
 - 1. General
 - 2. Vertical planning of streets
 - 2.1. Nature of the vertical planning of streets and cases of design of axial junctions for streets intersecting at right angles
 - 2.2. Analytical design of street intersections

2.3. Design of street surfaces using project horizontals

2.4. Numerical illustration of a vertical solution of an axial intersection

2.5. Vertical planning of complexly situated street intersections

2.6. Vertical planning of street junctions

2.7. Vertical planning of the rest of the street area

3. Vertical planning of squares

4. Vertical planning of quarters, sport playgrounds and free areas

2.4.4. APPLICATION OF THE PROJECTS FOR VERTICAL PLANNING

2.4.4.1. Development of projects and tracing of vertical planning

2.5. SOFTWARE FOR PHYSICAL PLANNING AND 3D DESIGN OF VERTICAL PLANNING

2.5.1. Software for physical planning

2.5.2. Digital development of the project for vertical planning of a settlement

2.5.3. 3D design and visualization in vertical planning

2.5.4. Development and application of electronic physical design

2.6. REFERENCES.

INDEX

Applied geodesy

Cor. Mem. Prof. Dr. Eng. Georgi Milev. Graduate of the University of Architecture, Civil Engineering and Geodesy (UACEG), Sofia (1956). In 1960 – Research Associate in the Bulgarian Academy of Sciences (BAS). In 1976 – Associate Professor, 1985 – Professor, 2008 – Cor. Mem. of BAS. Since 1988 – Cor. Mem. of the Bavarian Academy of Sciences, Germany. In 1973 – defended a PhD thesis in the Stuttgart University. Since 2001 – lectures to the students on Geodesy and Engineering Geodesy in UACEG, German lingual education.

The scope of his diverse and efficient activities is significant – scientific, applied research, scientific-organizational, educational, international, promotional, publishing, inventive, expert, scientific

managerial and implementation. Basically, these activities were carried out in BAS, the Federation of Scientific Technical Unions in Bulgaria (FSTUB), the Union of Scientists in Bulgaria, UACEG and other institutions in Bulgaria and in international organizations and projects, mostly on an interdisciplinary ground.

The scientific activity of Prof. Milev covers both aspects of geodesy – natural and engineering. The number of his publications exceeds 580, of them 16 separate monographs, 9 studies, 5 books – each one of which is a system of monographs, 26 editing and publishing of scientific proceedings, 120 scientific papers, 243 scientific reports, etc. He was awarded by Stuttgart University for high scientific achievements of his thesis (1973).

Prof. Milev is honorary member of the International Federation of Surveyors (FIG), FSTUB and others. He had been a chairman of the Union of Surveyors and Land Managers in Bulgaria since 1990 for 24 years and later – its honorary chairman. He is Editor in chief of the Geodesy, Cartography and Land Management magazine since 1997. Member of BAS. Space research and Technologies Institute.

Honorary Prof. Dr. Eng. Ivo Milev graduated geodesy and mine surveying at the University of Mining and Geology, Sofia in 1991. He defended his PhD thesis in 2000 at the Technical University, Berlin – direction Construction and Geodesy.

He works in both aspects of geodesy – engineering and natural, but mainly in the area of Applied Geodesy – Engineering Surveying. This includes primarily the development of theory, software and application of adjustment – processing the results of geodetic measurements; GNSS – theory, software and application, alone and combined with data from other measurements; theory and software and application in the study of deformations of engineering objects – buildings and facilities, and the terrains for their situation; modern techniques of measurement – electronic tachometry, laser

scanning and others, development, software and application. Special attention is paid to transport objects, particularly to railroad parameters. He has registered two patents associated with his name in implementing the system of the Leika Concern Geosystems.

He was: expert of UN – OOSA on reference systems; member of the Steering Committee of EUPOS (EUropean Positioning Determination System); chairman of Working Group Private Services RTCM SC 104 (Radio Technical Commission for Maritime Services); guest professor at Beuth University of Applied Sciences in Berlin, East Kazakhstan Technical University, State Technical University of Kazakhstan and Siberian State Geodetic Academy.

Prof. Ivo Milev is a member of Working Group 4 Engineering Surveying of the Union of German Surveyors; Chairman of Commission 6 Engineering Geodesy of the International Federation of Surveyors for the period 2013-2017. He is an Executive Director of TechNet-rail GmbH. He is Honorary Prof. of the Siberian State Geodetic Academy, Russia and of the Technical University of Dresden, Germany.

3.3. BOOK 3.1

Corr. Mem. Prof. Dr. Eng. GEORGI MILEV Hon. Prof. Dr. Eng. IVO MILEV

APPLIED GEODESY Part 1 ENGINEERING SURVEYING

Book 3 (3.1) CONSTRUCTION OF LINEAR OBJECTS, BUILDINGS, FACILITIES AND INSTALLATION OF TECHNOLOGICAL EQUIPMENT. PLANS OF THE BUILT COMPLEX SITES

Union of Surveyors and Land Managers in Bulgaria Sofia, 2020, revised 2022

Annotation

Book 3, Part 1, Engineering Surveying, Applied Geodesy considers the nature, tasks and role of Engineering Surveying in the **design**, **tracing**, **construction** and **operation** of **specific types** of engineering objects – linear objects, buildings, facilities and installation of technological equipment, plans and information systems of the built complex sites, etc.

Due to the versatility of the problems treated and the large volume of the matter discussed, exceeding 1000 computer pages, Book 3 is issued as two books – Book 3.1 and Book 3.2.

The specificity of geodetic works in the design and construction of linear objects (roads, railways, main pipelines, etc.) and the facilities along them (bridges, road junctions, tunnels, also metropolitans, etc. – **Book 3.1, without bridges**) are considered, as well as geodetic works related with methods, technologies, tracing and control measurements during the construction and installation of buildings, facilities (dams, sport and civil and high-rise structures, etc.) and installation of machines for various purposes, built independently or in complexes of engineering objects, *as well as hydro melioration objects and corrections of rivers and floods* – **Book 3.2**. Further on the composition of plans is presented for the built objects and the cadastre of communications of the complexes of engineering objects. So, among other things, up-to-date engineering information and terminology are used and experts speak the same language, even more so that the problems addressed are interdisciplinary ones.

The book is with an original structure. The exposition is in conformity with the accepted way of presentation in Books 1 and 2 of the authors, with the current regulatory framework and the possibilities afforded by modern digital devices, instruments, systems and technologies. It reflects to a significant extent the views, years of research, teaching experience, involvement in the construction and study of deformations of engineering objects, including such with original spatial design solutions, realized with the participation of the authors.

The book is intended for specialists working on construction (exploration, design, construction, installation) and operation of various engineering objects and complexes of them, as well as for lecturers, PhD students, students in the area of Architecture, Civil Engineering and Geodesy, etc., and for practitioners in the field of Engineering Surveying, recommendably with the other two books.

We dedic	ate to:	Natalia Ivanova Mileva	– wife and mother
----------	---------	------------------------	-------------------

The authors

Reviewers:

- 1. Corr. Member Prof. D.Sc. Dr Arch. Atanas Kovachev, Assoc. Prof. Dr. Eng. Veneta Kotseva
- 2. Assoc. Prof. Dr. Eng. Todor Kostadinov
- 3. Dr Eng. Ivan Kalchev Ivanov

ISBN 978-619-90732-4-7 printed 978-619-90732-5-4 pdf (ED. № 978-619-90732)

Preface

The book "Construction of linear objects, buildings, facilities and installation of technological equipment. Plans of the built complex objects" is part of the Applied Geodesy project of the authors, consisting of three parts: 1. Engineering Surveying, 2. Natural scientific aspect of Geodesy application, 3. Other applications of Geodesy. The three together treat the versatile application of geodesy.

This is in fact the third book – Book 3 of Part 1. Engineering Surveying, which is issued in the form of **3 books**. Book 1 **Basics, systems and technologies in Engineering Surveying** (498 p.) and Book 2 **Design and implementation of physical and general plans** (330 p.) are already distributed in digital form by the electron bookstore [http://Biblio.bg] and in an analog form by the bookstores of UACEG, UMG, SEK bookstore for building literature and others. They were printed in the Avangard Publishing House and are editions of the Union of Surveyors and Land Managers in Bulgaria (Ed. No 978-619-90732).

The reason for the separate publication of this part of the problems of Engineering Surveying as a single book – Book 3 is: the large volume of the materials on Engineering Surveying; the specifics and thematic distinguishing of the topics; the realized for the first time differentiation, systematization, generalization and representation of the modern achievements in this area in the form of systems, methods and technologies (a basic, indivisible element and a prerequisite – theoretical and practical, for the subsequent realization also of individual specific engineering objects or a complex of them); the necessity of broader presentation of the issues on exploration, design, construction, control and investigation of the deformations of particular objects or complexes of them, due to the fact that many complex specific problems emerge and have to be solved by the surveyors. Unfortunately, there are a few or no examples and detailed generalizations for this in reference literature. However the authors consider that it is very useful to summarize the information and experience in this context and to present it to the surveyors, since the experience in engineering surveying is of extreme importance for solving the problems; the broad circle of specialists, working particularly only in this area. Last but not least, its separate publication will make it much easier accessible and convenient for use. This is also enhanced by its realization with the modern possibilities of digital publication and use, including with mobile devices.

As already mentioned in the annotation – Book 3 has to be issued in two parts – Book 3.1 and Book 3.2.

At the same time there is planned, immediate and inevitable connection between the matter treated here and its specific implementation and the other two books of 1. Engineering Surveying. The application during construction is implied – the design, tracing and control in the course of the building process and installation of the different types of specific engineering objects and complexes of them. This means that the three books represent a whole, an integral organic entity – Engineering Surveying. Therefore, the numbering of titles, figures and tables, etc., are an indivisible part – an element of 1. Engineering Surveying. This also determines the inclusion of this book further in a unified digital edition as 1. Engineering Surveying. In fact, as already noted, it was initially included as an indivisible part of it. Something that has not been done so far in the world literature in this area.

In the literature devoted to Engineering Surveying there are actually a few complete specialized works, dedicated entirely to Engineering Surveying. However, there are a lot of those dedicated to specific applications of Engineering Surveying. They have found to a great extent their place in the offered work, of course together with the modern legal basis.

In Book 3, as well as in the already issued books -1 and 2, the **decimal numbering** system is used. Due to the large number of titles and their multiple stages, for the sake of clarity, simplification has been made here by introducing sequentially a four-stage numbering as in our

previously mentioned Books 1 and 2. It consists in introducing the conventional four-stage numbering, applying when necessary, a new additional four-stage numbering in the cases, when it has to be exceeded.

In the third book however, **the individual sections had to be formatted independently** in terms of **numbering** of reference literature, figures, tables and formulas due to the complexity and multifarious nature of continuous numbering. Such a problem actually arises here as with quoting text titles, although not quite often. So, except for the accepted rule for citing from one book to another, for the three books, new moments of citing appear here for quoting from one section to another in Book 3. It is accepted to place the number of the section before the cited number of a figure, table, formula, reference literature. For example, if it is necessary to cite Fig. 56 of section 3.6 – bridges, in some other section, citing in the other section has the form (Fig. 3.6-56, respectively Table 3.6-5, formula 3.6-35, reference literature source [3.6-25]). In this way the identity is ensured.

The authors acknowledge their gratitude to the Union of Surveyors and Land Managers in Bulgaria for issuing the book under its auspices, as well as for the assistance and support rendered for the preparation and realization of the book. We also express our gratitude to the reviewers Corr. Mem. Prof. D.Sc. Dr. Arch. Atanas Kovachev and the co-reviewer Assoc. Prof. Dr. Eng. Veneta Kotseva, to Assoc. Prof. Dr. Eng. Todor Kostadinov and Dr. Eng. Ivan Kalchev Ivanov for the positive reviews of the book. We also thank Assist. Prof. Eng. Ivo Gadzhov for the cooperation in presenting digital road design, Eng. Georgi Lazarov, Eng. Yavor Dimitrov and Eng. Petar Vuchev for the effective cooperation in preparing parts for Hydrotechnical Construction, respectively to Eng. Ivailo Iliev for the gas-distribution pipelines and M.Sc. Econ. Ilian Panchev for the effective collaboration in solving problems with the computer preparation of the book. Our gratitude is also acknowledged in some sections to other colleagues with contribution to the realization of their topics.

Special thanks are due to the unreserved and active cooperation of Eng. Kristina Galabova for preparing the tables, formulas and most of the figures for press, compiling the index, etc., as well as to Svetla Petrova and Eng. Ivanka Koleva for elaborating the title page of the book and to Eng. Ekaterina Krusteva for translating parts of the book to English.

Sofia, December, 2019, revised 2022

The authors

CONTENTS of Book 3.1

3. CONSTRUCTION OF LINEAR OBJECTS, BUILDINGS, FACILITIES	AND
INSTALLATION OF TECHNOLOGICAL EQUIPMENT. PLANS OF	THE
BUILT COMPLEX OBJECTS	19
3.1. GEODETIC WORKS IN THE DESIGN AND CONSTRUCTION OF LIN	EAR
OBJECTS AND THE FACILITIES ALONG THEM	19
3.1.1. Brief characteristics and subdivision of linear objects	19
3.1.2. Generally valid elements and activities in the construction of linear objects	21
3.1.2.1. General	21
3.1.2.2. Geodetic base and activities	22
3.1.3. DESIGN AND TRACING OF LINEAR OBJECTS	23
3.1.3.1. DESIGN AND TRACING OF THE AXES OF LINEAR OBJECTS	
OUTSIDE BUILT-UP AREAS	23
1. General on design and tracing	23
2. Graphic analytic design, data determination and tracing	24
2.1. Design using conventional methods and technologies	24
2.2. Tracing using conventional methods and technologies	28
3. Digital design and tracing using modern technologies	30
3.1. Digital terrain model (DTM)	30
3.1.1. Definition and essence	30
3.1.2. Data sources for the digital terrain model	32
3.1.3. Classification of data for the digital terrain model composition	33
3.1.4. Methods of composition	34
3.1.5. Analysis, algorithms and software	35
3.1.6. Software systems used for the composition of digital terrain models	37
3.2. Design and determination of the elements for tracing	38
3.2.1. Using the InRoad design system	38
3.2.2. Road design using the Plateia software	39
3.3. Tracing using modern technologies	39
4. Design and tracing of slope channels	40
3.1.3.2. DESIGN AND TRACING OF THE AXES OF LINEAR OBJECTS IN	
INDUSTRIAL ENTERPRISES, SETTLEMENTS AND OTHER BUILT-UP	
TERRITORIES	41
1. General on design and tracing	41
2. Tracing of roads and railways	42
3. Tracing of underground communications	43
3.1.4. TRACING AND CONTROL DURING THE CONSTRUCTION OF THE	
GROUND BASE OF ROADS, RAILWAYS, CHANNELS AND RIVER	
CORRECTIONS	45
3.1.4.1. Characteristics of the transverse profiles of the objects	45
3.1.4.2. Tracing the elements of the transverse profiles	47
3.1.4.3. Control during construction	48
3.1.5. Software for the design of linear objects	48
3.1.6. References to 3.1.	49
3.2. GEODETIC WORKS IN THE DESIGN, CONSTRUCTION,	
RECONSTRUCTION AND MAINTENANCE OF RAILWAY LINES	51
3.2.1. General information about railway lines in Bulgaria and high-speed railway	
transport	51
3.2.2. Legal basis, classification and elements of the railway lines	54

3.2.2.1. Legal basis	54
3.2.2.2. Classification and elements of the railway lines	54
3.2.2.3. General provisions and requirements during construction and operation of	
railway lines, their elements and railway infrastructure	56
3.2.3. Design of new railway lines	59
3.2.3.1. Specific features of the design of railway lines as linear objects	59
3.2.3.2. Design of the alignment axis in situation and height plan	60
1. Situation plan	60
2. Curves used in railway lines	61
3. Longitudinal profile	63
4. Transverse profiles	64
3.2.4. Software for design, construction, reconstruction, maintenance and operation of	
railway lines	66
3.2.4.1. Transgeo OOD	66
3.2.4.2. Technet Rail	69
3.2.4.3. CGS plus	72
3.2.5 Design of reconstruction of existing railway lines	76
3251 General	79
3252 Parameters of the designed alignments	77
3 2 5 3 Design in difficult terrain conditions	78
3.2.6. Data for the geodetic works during the design of new and reconstruction of	70
existing railway lines	79
3261 General information	79
3.2.6.2 Geodetic network of the Rozino-Hr. Danovo railway section	80
1 Reference geodetic network	80
2 Detailed geodetic network	82
3.2.6.3 Modern solutions, systems and technologies in the survey of the rail road and	02
the railway stations	84
1 General for the system	84
2 Data for Mohile railway systems	84
2.1 Swiss trolley complex mobile system	84
2.1. Swiss tioney complex mobile system 2.2. Leica Geosystems SiTrack	87
2.2. Application of the Mobile railway systems	92
3.2.6.4 Geodetic works in the survey of an open road for the development of the) [
project for railway line reconstruction	92
1 General for geodetic works	92
2 Traditional methods and their undating	93
3 Measurements of the natural arc rises	95
A Angular image	96
5. Graphic representation of the measured arc rises	90
6 Reconstruction of a railway line in situation plan	101
3.2.6.5 Survey of the rail road and railway stations	101
3.2.6.6 3D laser scanning for railway purposes	107
1 Laser scanning of the Tzar station	107
2 An 18 km segment of the line between Crewe and Chester	107
2. An Io-kin segment of the fine between crewe and chester 3. Application during reconstruction of an existing railway line	100
4. Topographic mapping of junction connections between the lines in London	100
5. Implementation of a mobile laser scanner in the SNCF French railways	110
3.2.7 Tracing and control during the construction and reconstruction of railway lines	110
3.2.7.1 Geodetic base, data and tracing of the axis and railway infrastructure	110
S.= Souddie ouse, and mains of the unit and fully ay influence	110

3.2.7.2. Tracing of switches, switch connections and switch streets	113
1. Switches	113
2. Tracing of switch connections between two tracks	114
5. Switch sheets 4. Modern solutions in tracing of switches and stations	117
5. Accuracy in the tracing of stations	117
6. Tracing during doubling and electrification of railway lines	110
3.2.8 Maintenance of railway lines	121
3.2.8.1 General for maintenance	121
3.2.8.2. Design of railway optimization in plan and profile	121
3.2.8.3. Coordination and kilometrage of the design axis of the railway line	123
3.2.8.4. Benchmarking	123
3.2.8.5. Data base and information system	125
1. Data base	125
2. Information system – GIS	126
2.1. General data	126
2.2. Realization of survey, processing and GIS	127
2.2.1. Object of survey	127
2.2.2. Organization of geodetic and aerial survey	128
2.2.3. Preparation for implementing the aerial photo survey	128
2.2.4. Processing of the recorded aerial photo images	129
3.2.9. References to 3.2	132
3.3. GEODETIC WORKS IN THE DESIGN, TRACING,	
CONSTRUCTION, RECONSTRUCTION, CAPITAL REPAIR AND	
CONTROL OF ROADS IN BULGARIA	134
3.3.1. Basic provisions	134
3.3.2. LEGAL BASIS, CLASSIFICATION AND ROAD ELEMENTS	134
3.3.2.1. Legal basis	134
3.3.2.2. Road subdivision and classification	135
3.3.2.3. Road elements	136
3.3.2.4. General provisions and requirements for road construction and operation	126
1 POADS ACT	130
1. RUADS ACT 1.1. Some basic specific concepts of the Boards Act	130
1.1. Some basic, specific concepts of the Roads Act	130
1.2. Construction repair maintenance and management of road infrastructure safet	130
1.4 Expropriation and temporary use of real estates for roads	140
1.5. Financing	141
2. REGULATIONS FOR IMPLEMENTING THE ROADS ACT	140
2.1. Basic elements of the road	140
2.2. Adjacent areas	141
2.3. Road planning, construction and maintenance	141
3. NOTIFIED ORDINANCE FOR ROAD DESIGN	141
3.1. General for the ordinance	141
3.2. General provisions	143
3.3. Road alignment	143
3.4. Road design elements	144
3.4.1. General requirements	144
3.4.2. Situation	145
3.4.3. Longitudinal profile	146

3.4.4. Transverse slopes and expansions	148
3.4.5. Serpentines	149
3.4.6. Spatial design	150
3.5. Road bed	150
3.5.1. Transverse road profile	150
3.5.2. Elements of the road bed	151
3.5.3. Dimensions	151
3.5.4. Safe zone	151
3.5.5. Types of road beds	151
3.5.6. Intersection and positioning of other communications	152
3.6. Road crossings and road junctions	153
3.6.1. General	153
3.6.2. Road crossings	153
3.6.3. Road junctions on two and more levels	154
3.7. Earth body	154
3.8. Scope and content of road investment projects	154
3.9. Geodetic works, digital, text and graphic part of the projects	155
3.9.1. General	155
3.9.2. Feasibility studies for road construction investment projects	156
3.9.3. Preliminary design of road objects	156
3.9.4. Technical project for construction of roads and their facilities	157
3.9.5. Technical project for construction of <u>new</u> road objects	157
3.9.6. Technical project for rehabilitation of existing road objects	159
3.9.7. Detailed spatial plan (DSP) / plot plan	161
3.9.8. Detailed design for <u>construction</u> of roads and their facilities	162
3.9.9. Detailed design for construction of <u>new</u> road objects	163
3.9.10. Detailed design for rehabilitation of existing road objects	165
3.9.11. Principal problems related to the Ordinance and the legal basis	166
4. More obligatory dimensions, data and type elements of roads	167
3.3.3. General information about roads and highways in Bulgaria	169
3.3.4. GEODETIC WORKS IN THE DESIGN OF NEW AND RECONSTRUCTION	
AND CAPITAL REPAIR OF BUILT ROADS	171
3.3.4.1. Geodetic base for design and tracing	172
1. Reference networks	172
2. Maps and plans	172
3.3.4.2. Design of the road alignment axis in situation and height	172
1. General data	172
2. Situation	173
3. Longitudinal profile	174
4. Transverse profiles	176
3.3.5. Software for design, construction, reconstruction, maintenance and operation o 177	f roads
3.3.5.1. General on software solutions	177
3.3.5.2. Road design with Plateia and AutoCAD Civil 3D	177
1. Plateia	177
1.1. General information	177
1.2. Road design with Plateia	178
2. AutoCAD Civil 3D	179
3.3.5.3. Generalized sequence and progress of digital road design	181
3.3.5.4. Some geodetic aspects of BIM realization in road rehabilitation	181
- ·	

1. Essence of BIM	182
2. Configuration and preliminary preparation	183
3. Introducing processed data from geodetic measurements with codes and	
developing a digital model	184
4. Road alignment optimization	186
5. Developing a terrain profile	189
6. Developing a longitudinal profile	190
7. Developing a type transverse profile	190
8. Developing a theoretical road model	191
9. Calculation of input materials	191
10. Application	192
3.3.6 Specific features of geodetic works in highway construction	192
3 3 6 1 General solutions and geodetic base	192
3362 Restoration re-measurement and re-coordination of points from the detailed	1/2
geodetic base for the Maritsa highway. Dimitrovrad-Harmanli section	194
1 General data	194
2 Detection of existing and restoration of destroyed points of the geodetic base	105
2. Detection of existing and restoration of destroyed points of the geodetic base 3. Complete re-measurement of the polygon base	105
3.1 GNSS measurements	105
3.2 Geometric levelling	195
Λ Calculation for re-coordinating the points of the base	197
4.1 Processing the results of GNSS measurements	197
4.1. Processing the results of geometric levelling	108
5. Registers of points of the geodetic base and levelling benchmarks	108
3.3.7 Tracing in road connection and intersection. Road junctions	108
3.3.8 Tracing the road bed in a curve	206
3.3.0. Tracing and control in achielt placing	200
3.3.9. Tracing and control in asphatt placing	200
3.3.10. Investigating the deformations of the foad bed and foad suffacing	212
3.3.11. References to 5.5. 3.4. DESIGN TDACING AND CONTROL IN THE CONSTRUCTION OF	214
I INFAD OR IECTS AND THE DELATED FACILITIES OF DOWED	
SUDDEV COMMUNICATIONS WATED SUDDEV	
SEWEDACE CARLEWAVS	215
3 4 1 General on power supply	215
3.4.1.1. Conorol	215
3 4 1 2 Energy Sources	213
3.4.1.2. Energy Sources	215
3.4.1.4. 2.4.1.5. Energy storage facilities	215
2.4.2 ENTEDDDISES SYSTEMS AND TECHNOLOCIES OF DOWED SUDDLY	213
3.4.2. ENTERPRISES, STSTEWIS AND TECHNOLOGIES OF POWER SUPPLT	210
2.4.2.2. Definerios	210
2.4.2.2. Refineries	217
2.4.2.4. Nuclear power stations	210
2.4.2.5. Distance for stations	219
2.4.2.6. Wind newer systems	220
2.4.2.1 INEAD ODJECTS, THEID EACH ITIES AND THE NETWORKS OF	220
J.4.J. LINEAR ODJECTS, THEIR FACILITIES AND THE NETWORKS UP DOWED SUDDI V COMMUNICATIONS WATED SUDDI V AND	
FOWER SUFFLI, COMMUNICATIONS, WATER SUPPLI AND SEWEDACE	222
SEWERAUE 2.4.2.1 Systematization of objects	222
1. Electric power transmission	220
1. Elecult power transmission	LLL

2. Pipelines	222
2.1. Oil pipelines	222
2.2. Thermal pipelines	224
2.3. Gas pipelines. Main gas pipelines	224
3. Main water pipelines and sewage collector systems and networks	226
3.4.3.2. Electric power supply network	226
1. General	226
2. Electric power transmission network of Bulgaria	227
3.4.3.3. Gas transmission system and networks	228
1. General data about the Bulgarian gas transmission system	228
2. National gas transmission network	228
3. Transit gas transmission network	229
4. Chiren underground gas storage	229
5. Transborder infrastructural projects	230
6. Infrastructural projects of Bulgartransgaz EAD:	231
6.1. Connections with transmission systems of neighbouring countries	231
6.2. Natural gas storage	232
6.3. Extension of the existing gas transmission network	232
6.4. Gas distribution centre (hub)	233
3.4.3.4. Communication lines and cables	234
3.4.4. LEGAL BASIS	234
3.4.4.1. Energy law	235
1. General provisions	235
2. Regulation of activities. Licenses. Operators of the transmission network	235
3. Property rights. Building right. Expropriation	235
4. Electric power generation	236
5. Heat supply	237
6. Gas supply	237
7. Additional provisions. Definitions	237
3.4.4.2. Ordinance No 6 of November 25, 2004. On technical rules	239
1. Underwater gas pipelines	239
2. Gas transmission network	239
3. Underground gas pipelines	240
4. Aboveground gas pipelines	240
5. Underground gas storage facilities	240
6. Natural gas	240
7. Underground pipelines for natural gas	241
8. Transitional and final provisions	241
3.4.4.3. Ordinance on the arrangement of electrical appliances	241
1. Aerial electric transmission lines with voltage of up to 1000 V	242
2. Aerial cable lines with voltage exceeding 1000 V	242
3.4.4.4. Ordinance No 17 on the rules for construction of cable telecommunication	a 10
networks and the facilities thereto of 3.06.2005	243
1. General provisions	243
2. Underground cable telecommunication networks	243
3. Aerial cable telecommunication networks	243
4. Requirements for the construction of telecommunication network facilities	243
5. Network marking	244
3.4.4.5. Water Act	244
3.4.5. DESIGN, TRACING, CONTROL AND DOCUMENTATION OF ELECTRIC	

POWER SUPPLY AND SEWAGE LINEAR OBJECTS	244
3.4.5.1. General provisions	244
3.4.5.2. Design, tracing and control of electric power lines. GIS of the electric	
power transmission network. Documentation	245
1. General provisions and requirements in the design of electric power lines	245
2. Geodetic base and methods of design	247
3. Graphic design	248
3.1. Design of the alignment in situation	248
3.2. Design of the longitudinal profile of the electric power line	250
4. Digital design	253
4.1. General on digital design and software	253
4.2. Specific software for design of aerial electric power lines	254
4.2.1. ELECTRA	254
4.2.2. Other software	256
5. Tracing, marking and benchmarking of the alignment	256
6. Pillar tracing and control	257
7. Developing a map and GIS for the Bulgarian electric power transmission no	etwork
259 7.1 Assignment survey and processing Decumentation	250
7.1.1. General provisions and data about NEC and the project	259
7.1.2. Current state of the electricity sector	259
7.1.2. Current state of the electricity sector	201
7.1.4. Scope of work Description of the project	262
7.1.5. Implementation of the GIS contract	262
7.1.5.1 Activities	263
7152 Results	265
7.2 FSRI GIS for the high voltage electric power transmission network	265
7.3 GIS and low voltage networks	265
7.4 Inspection of power lines	268
3 4 5 3 Design, tracing and control of communication lines and cables	268
1. Design of communication lines and cables. Required plans and	200
tracing of communication lines	268
2. Required plans and tracing of communication lines	269
3. Tracing of cable networks	269
4. Design and construction of cable electronic communication networks	270
4.1. General on networks and their elements	270
4.2. Regulations	271
4.3.Content of the investment project	271
4.4. Construction of cable systems	271
4.4.1. Methods	271
4.4.2. Tracing	272
4.5. Placement of optic cables	272
4.5.1. Requirements for the optic cable	272
4.5.2. Underground installation of cables	272
4.5.3. Placement of cables	273
4.6. Marking of the placed cable	273
3.4.5.4. Design, tracing, control and documentation of axes of pipelines for electric	
power supply, water supply and sewage	274
1. General provisions and geodetic activities	274
2. Design of the main pipelines	275

2.1. General requirements	275
2.2. Ensuring the necessary digital map and other geodetic base for the design, i	
including new survey. Design	277
2.2.1. General	277
2.2.2. Development of a digital terrain model for the design of the	
Chiren-Kozloduy-Oryahovo gas pipeline alignment	277
2.2.2.1. Airborne laser scanning	277
2.2.2.2. General characteristics of the object	278
2.2.2.3. Geodetic activities	278
2.2.2.4. Technical parameters of the airborne laser scanning	219
2.2.5. Development of a digital geodetic base for the design of a gas pipeline	200
2.3 Detailed design	280
2.5. Detailed design 2.4. Tracing, control and documentation of main pipelines	281
2.5 Using software in the geodetic works for the individual stages of main gas	205
pipeline construction	283
2.6 Pulgaria Crassa gas interconnection	200
2.0. Duigana – Orecce gas interconnection 3. Design, tracing and documentation of distribution gas pipelines and networks	200 200
A Design, tracing and documentation of main water pipelines, sewage collectors	290
4. Design, tracing and documentation of main water pipernes, sewage concetors	294
4.1. General	294
4.2. Construction of mineral water pipeline from a well near the mineral bath	_> .
in the Barzia village to the mineral bath in the town of Berkovitsa	294
4.2.1. Scope of the project	295
4.2.2. Scope of the construction and assembly works on the building site	295
4.3. Pressure-head pipeline from the Orehovitsa village to the town of Trastenik	296
5. Tracing and control in the construction of underground infrastructure,	
related to electric power supply, communications, water supply and sewage	297
6. Tracing and mounting of energy objects on columns	396
3.4.6. CABLEWAYS	303
3.4.6.1. General information and requirements for cableways	303
3.4.6.2. Legal basis for cableways	308
1. Ordinance on sale operation and technical surveinance of cableways	208
1.1. General provisions	300
1.2. Requirements for new cableways	309
2. Ordinance on essential cableway requirements for transport of people and	507
2. Ordinance on essential cableway requirements for transport of people and	310
2.1 General	310
3 Design tracing control and documentation of hanging cableways	310
3.1 Feasibility studies and justification Basic elements of a cableway	310
3.2 Geodetic base and cableway design	311
3.3 Detailed design of the longitudinal profile	313
3.4. Requirements for the accuracy of the geodetic works	315
3.5. Tracing of cableways	315
3.6. Geodetic survey and control of existing cableways maintenance	010
reconstruction and operation. Examples of new and existing cableways	316
3.6.1 Basic principles	316
3.6.2 Rilski Ezera chair lift	317
5.6.2. MIDNI LZOIU OIUII IIIU	511

3.6.2.1. Technical characteristics	317
3.6.2.2. Establishment of the design axis, project, geodetic base, tracing and control	318
3.6.2.3. Survey of the built position of the cableway	323
3.4.7. References to 3.4	324
3.5. GEODETIC WORKS RELATED TO THE CONSTRUCTION OF TUNNELS	
AND METROPOLITANS	329
3.5.1. BRIEF INFORMATION ABOUT TUNNELS AND METROPOLITANS	329
3.5.1.1. General	329
3.5.1.2. TUNNELS	329
3.5.1.3. METROPOLITANS	334
1. Main Principles	334
2. Sofia Metropolitan	336
3.5.1.4. Basic data and requirements for the design and construction of tunnels	
and metropolitans	339
1. Road and railway tunnels	339
1.1. General on the design of road and railway tunnels	339
1.2. Design of the situation and longitudinal profile	341
2. Data and requirements for the metropolitans	341
2.1. Requirements for the alignment axis and the stations in plan and profile	341
2.2. Metro tunnel gauges	342
2.3. Superstructure of the railway	342
2.4. Metro stations, tunnels and other facilities	342
3.5.1.5. Technologies and methods applied in the construction of the Sofia	
Metropolitan	345
1. Open method	345
2. Milan method	347
3. Shield method	349
4. New Austrian tunnelling method	350
5. Modified Austrian tunnelling method	351
6. Technology and organization in the construction of the central section of the	
third metro diameter of Sofia Metropolitan	351
6.1. General information on the conditions and technology	351
6.2. Appropriate technology	352
6.3. Scheme of the operation of the tunnelling boring machine	353
6.4. Preliminary construction works	354
3.5.1.6. Legal basis	354
3.5.2. GEODETIC WORKS IN THE DESIGN, TRACING, CONSTRUCTION	
AND CONTROL OF TUNNELS	355
3.5.2. 1. General	355
3.5.2.2 . Topographic and geodetic base for the tunnels	356
1. Topographic base – maps and plans for the design	356
2. Geodetic base – geodetic networks	357
2.1. Types of geodetic networks	357
2.2. Design and construction of the geodetic reference network	358
3. Tracing and orientation of tunnels	359
3.1. General on tracing and orientation	359
3.2. Methods for tunnel tracing and orientation	360
3.3. Development of projects and tracing and orientation of the tunnel axis	360
3.4. Orientation of a tunnel through a vertical shaft using plumbs	365
3.4.1. Orientation by means of plumbs and a connecting triangle	365

3.4.2. Orientation with the help of a ruler	367
3.4.3. Optical and laser plumbing	367
3.5. Orientation of a tunnel through two vertical shafts	368
3.6. Other orientation methods	369
3.7. Transfer of the elevation from the surface to the tunnel	370
4. Underground geodetic network. Tracing and control	378
4.1. Realization of the network and tracing and control	378
4.2. Precise management and control of tunnel boring machines	380
4.3. Tracing and control in railway construction	382
4.4. Tunnel gauge measurement	383
5. Tracing of hydrotechnical tunnels with high slopes during construction – adits	383
6. Issuing acts, protocols and schemes for tracing and control in tunnel constructio	n 381
3.5.3. GEODETIC PART IN THE DESIGN, TRACING, CONSTRUCTION	
AND CONTROL OF METROPOLITANS	381
3.5.3.1. Geodetic problems solved in Sofia Metropolitan	381
3.5.3.2. Topographic base for digital maps, plans and other data	382
3.5.3.3. Digital model of the metropolitan project	396
1. Digital model of the alignment and longitudinal profile	396
3.5.3.4. GEODETIC NETWORKS IN SOFIA METROPOLITAN	389
1. General provisions and type of geodetic networks	389
1.1. General provisions	389
1.2. Triangulation networks on the territory of Sofia City	390
1.3. Leveling networks on the territory of Sofia City	392
1.4. Basic tasks to be solved using the reference geodetic networks	
and requirements for the metro construction, installation and	
operation	393
1.5. Preliminary assessment of reference networks	394
1.6. Possibilities of using the existing and appropriate new reference	
networks in the metro area	395
1.7. Considerations for the type of new geodetic networks	396
1.8. Geodetic reference network covering the general metro scheme	397
1.9. Variants of precise networks along the different metro diameters	397
1.10. Model studies of geodetic network variants	400
1.10.1. Design of research	400
1.10.2. Calculations	401
1.10.3. Conclusions, proposals and inferences	401
1.10.4. Recommendations	401
1.11. Other possible variant solutions	402
1.12. Summary	403
2. Implemented geodetic networks in the different metro diameters	403
2.1. NETWORK OF THE FIRST METRO DIAMETER	403
2.1.1. Network of half-diameter 1 of the first metro diameter	403
2.1.2. Networks of half-diameter 2 of the first metro diameter	405
2.1.2.1. GNSS network from Serdika metro station to Mladost 1 quarter	405
1. General data	405
2. Selecting a method for network development	405
3. Network design	406
4. Data for the GPS network and the measurements	406
5. Project realization	407
5.1. Stabilization of points	407

5.2. GPS devices and measurements	407
5.3. Processing of measurements	408
5.3.1. Software	408
5.3.2. Vector calculation	409
5.3.3. Network adjustment	409
5.4. Transformation of coordinates in Sofia coordinate system	409
5.5. Final results	410
5.5.1. Vectors	410
5.5.2. Locking closed figures	411
5.5.3. Transformation of coordinates in Sofia coordinate system	412
5.5.4. Heights	413
6. Conclusions	413
2.1.2.2. Geodetic network for the construction of the extension and	
investigation of the horizontal deformations of Sofia metro from	
Station 7 (Serdika) to Station 9 (Vasil Levski stadium)	413
1. General	414
2. Stabilization of points	416
3. Measurement	418
4. Coordination of the points from the Reference geodetic network	418
5. Project for the angle-distance geodetic network	419
6. Stabilization of points of the angle-distance geodetic network	419
7. Measurement of the angle-distance geodetic network	420
8. Calculation of the point coordinates of the angle-distance geodetic	
network	420
9. Data and materials to be submitted by the contractor to the investor	421
2.2. NETWORK OF THE SECOND METRO DIAMETER	421
2.2.1. General	421
2.2.2. GNSS reference geodetic network	421
2.2.2.1. General information	421
2.2.2.2. Stabilization of points from the reference network	423
2.2.2.3. Description of the points, included in the project	423
2.2.2.4. Measurement	223
2.2.2.5. Definition of a local Sofia coordinate system	424
2.2.2.6. Adjustment of the reference network	424
2.2.2.7. Evaluation of the GNSS reference geodetic network (RGN GNSS) of the	
second metro diameter of Sofia metro	425
2.2.3. Precise angle-distance geodetic network of diameter 2 of the Sofia Metrop	olitan
427	407
2.2.3.1. General information	427
2.2.3.2. Stabilization of points from the precise network	428
2.2.3.3. Description of the point places and measurement of points from the	400
precise geodetic network	428
2.2.3.4. Adjustment of the precise angle-distance network	429
2.2.4. Precise height geodetic network of diameter 2 of Sofia Metropolitan	430
2.2.4.1. General information for the levelling network	430
2.2.4.2. Stabilization of benchmarks	431
2.2.4.3. Measurement	431

2.2.4.4. Processing the results of levelling measurements of precise levelling	
networks	431
2.2.5. Precise geodetic network of diameter 2 of Sofia Metropolitan – extension	100
after James Bourchier metro station	432
2.2.5.1. General information	432
1. GNSS reference network	432
1.1. Stabilization	434
1.2. Measurement and calculation	434
1.3. Adjustment and transformation of the reference geodetic network	435
2. Precise angle-distance geodetic network	435
2.1. Measurement of the precise angle-distance geodetic network	436
2.2. Adjustment of the precise angle-distance geodetic network	438
2.3. Adjustment of the precise levelling network	438
2.3. NETWORK OF THE THIRD METRO DIAMETER	438
2.3.1. General data	438
2.3.2. Project implementation	439
2.3.2.1. Stabilization, numbering and designation of points	439
2.3.2.2. Reference geodetic network GNSS1	440
1. General data for the network	440
2 Measurement and calculation of GNSS1	441
3 Measurement and transformation of GNSS1	441
2 3 2 3 Reference geodetic network GNSS2	441
1 General data for the network	441
2 Measurement	AA2
2. Adjustment and transformation of the GNSS2 Reference geodetic	772
network	112
A Provise angle distance and height geodetic network	442
4. Freeise angle-distance and height geodetic network	442
4.1. Data, measurement and adjustment of the precise angle-distance ne	twork
442	
4.2. Measurement and adjustment of the precise height geodetic network	442
2.4. Geodetic networks for the extension and branching of the metro alignments	443
3.5.3.5. TRACING AND CONTROL PROJECTS	444
1. Composing relevant projects for tracing and control	444
2. Project for study of metropolitan deformations	444
3.5.3.6. TRACING AND CONTROL IN THE METROPOLITAN CONSTRUCTION	N 445
1. General	445
2. Tracing and control for the different methods of tunnelling	445
2.1. Tracing and control in the open method of cutting – foundation pit	445
2.2. Tracing and control in the Milan method by means of spline walls	447
2.3. Tracing and control in the new and modified Austrian method	450
2.3.1. General information	450
2.3.2. Precise geodetic network of the surface	451
2.3.3. Tracing and control	451
2.4 Tracing and control in the shield method of tunnelling and in the construction	n
of the metro structure	453
2.4.1. General data	453
2.4.2 Tracing and control in driving the tunnel drilling machine	454
2.4.3 Tracing and control of the progress of the tunnel drilling machine in the	he
first diameter of Sofia Metronolitan	454
2.4.3.1. Robotized geodetic system	454

2.4.3.2. Control of the robotized system	456
2.4.3.3. Coordination and orientation of the metro tunnels	458
2.4.3.4. Geodetic network in the metro tunnel	458
2.4.3.5. Conclusions	459
2.4.4. Tracing and control of the progress of the tunnel drilling machine in th	e
third diameter of Sofia Metropolitan	460
2.4.4.1. General information	460
2.4.4.2. Navigation system of the tunnel drilling machine	460
2.4.4.3. Operation of the system	461
2.4.4.4. Geodetic control	463
3. Tracing and control in the construction of the rail track. Realization of the	
project for the alignment and profile	466
4. Tracing and control in aboveground and trestle construction of the metro	466
5. Geodetic works in rearrangement of urban infrastructure in the section of	
metro construction	468
3.5.4. STUDY OF DEFORMATIONS IN TUNNELS AND METROPOLITANS	468
3.5.4.1. General on the study of deformations in tunnels and metros	468
3.5.4.2. Study of deformations at the surface and in the tunnel	468
1. Radar interferometry for settlement investigation in tunnels and metros	468
2.1. Settlement investigation in a tunnel in Dusseldorf, Germany	468
2.2. Settlement investigation in Budapest metro, Hungary	469
3.5.4.3. Investigation of deformations inside the tunnel	469
3.5.4.4. INVESTIGATION OF DEFORMATIONS IN SOFIA METRO	470
1. General	470
2. Investigation of deformations of the metro and buildings in a	
section of half0diameter 2 of the first metro diameter	470
2.1. General and project for investigation of deformations	470
2.2. Precise leveling network for the metro construction and the studied objects	473
2.3. Stabilization	475
2.4. Measurement	475
2.5. Processing of results from network measurement	476
2.5.1. Joint adjustment of the entire network	476
2.5.2. Network adjustment by groups to determine vertical displacements of	
buildings	477
2.6. Determination of inclinations of buildings with 5 and more storeys	477
2.7. Inspection of the state of buildings before, during and after construction,	
based on geodetic measurements	479
3. Investigation of deformations of the metro tunnel and objects on the	
surface in the section of the second metro diameter after the James	
Bourchier station	479
3.1. General on the investigation	479
3.2. Investigation of deformations inside the tunnel	480
3.3. Investigation of deformations on the terrain and of the objects above the	
tunnel	481
3.4. Reference geodetic network and measurements to determine vertical	
displacements of the terrain, buildings and other objects above the metro	10-
tunnel alignment	482
3.4.1. Project and realization	482
3.4.2. Investigation of terrain settlements above the tunnel	484

3.5. Method, processing and program of measurements	485
4. Investigation of deformations of objects from the third metro diameter	486
5. Investigation of metro tunnel gauges	487
3.5.4.5. Automated deformation testing system of London metro	487
1. Total for the subway and the project	487
2. Measurement and processing system	489
3.5.5. Geodetic survey, documentation and information system of tunnels and of Sofia	
Metropolitan	491
3.5.6. References to 3.5.	497
Index	491
Applied geodesy	504

Cor. Mem. Prof. Dr. Eng. Georgi Milev. Graduate of the University of Architecture, Civil Engineering and Geodesy (UACEG), Sofia (1956). In 1960 – Research Associate in the Bulgarian Academy of Sciences (BAS). In 1976 – Associate Professor, 1985 – Professor, 2008 – Cor. Mem. of BAS. Since 1988 – Cor. Mem. of the Bavarian Academy of Sciences, Germany. In 1973 – defended a PhD thesis in the Stuttgart University. Since 2001 – lectures to the students on Geodesy and Engineering.

The scope of his diverse and efficient activities is significant – scientific, applied research, scientific-organizational, educational, international, promotional, publishing, inventive, expert, scientific managerial and implementation. Basically, these activities were

carried out in BAS, the Federation of Scientific Technical Unions in Bulgaria (FSTUB), the Union of Scientists in Bulgaria, UACEG and other institutions in Bulgaria and in international organizations and projects, mostly on an interdisciplinary ground.

The scientific activity of Prof. Milev covers both aspects of geodesy – natural and engineering. The number of his publications exceeds 580, of them 16 separate monographs, 9 studies, 5 books – each one of which is a system of monographs, 26 editing and publishing of scientific proceedings, 120 scientific papers, 243 scientific reports, etc. He was awarded by Stuttgart University for high scientific achievements of his thesis (1973).

Prof. Milev is honorary member of the International Federation of Surveyors (FIG), FSTUB and others. He had been a chairman of the Union of Surveyors and Land Managers in Bulgaria since 1990 for 24 years and later – its honorary chairman. He is Editor in chief of the Geodesy, Cartography and Land Management magazine since 1997. Member of BAS. Space research and Technologies Institute.

Honorary Prof. Dr. Eng. Ivo Milev graduated geodesy and mine surveying at the University of Mining and Geology, Sofia in 1991. He defended his PhD thesis in 2000 at the Technical University, Berlin – direction Construction and Geodesy.

He works in both aspects of geodesy – engineering and natural, but mainly in the area of Applied Geodesy – Engineering Surveying. This includes primarily the development of theory, software and application of adjustment – processing the results of geodetic measurements; GNSS – theory, software and application, alone and combined with data from other measurements; theory and software and application in the study of deformations of engineering objects – buildings and facilities, and the terrains for their situation; modern techniques of measurement – electronic tachometry, laser

scanning and others, development, software and application. Special attention is paid to transport objects, particularly to railroad parameters. He has registered two patents associated with his name in implementing the system of the Leika Concern Geosystems.

He was: expert of UN – OOSA on reference systems; member of the Steering Committee of EUPOS (EUropean Positioning Determination System); chairman of Working Group Private Services RTCM SC 104 (Radio Technical Commission for Maritime Services); guest professor at Beuth University of Applied Sciences in Berlin, East Kazakhstan Technical University, State Technical University of Kazakhstan and Siberian State Geodetic Academy.

Prof. Ivo Milev is a member of Working Group 4 Engineering Surveying of the Union of German Surveyors; Chairman of Commission 6 Engineering Geodesy of the International Federation of Surveyors for the period 2013-2017. He is an Executive Director of TechNet-rail GmbH. He is Honorary Prof. of the Siberian State Geodetic Academy, Russia and of the Technical University of Dresden, Germany.

Corr. Mem. Prof. Dr. Eng. GEORGI MILEV Hon. Prof. Dr. Eng. IVO MILEV

APPLIED GEODESY Part 1 ENGINEERING GEODESY

> Book 3(3.2) CONSTRUCTION OF LINEAR OBJECTS, BUILDINGS, STRUCTURES AND INSTALLATION OF TECHNOLOGICAL EQUIPMENT. PLANS OF BUILT COMPLEX OBJECTS

Corr. Mem. Prof. Dr. Eng. GEORGI MILEV

Hon. Prof. Dr. Eng. IVO MILEV

APPLIED GEODESY Part 1 ENGINEERING SURVEYING

Book 3(3.2) CONSTRUCTION OF LINEAR OBJECTS, BUILDINGS, FACILITIES AND INSTALLATION OF TECHNOLOGICAL EQUIPMENT. PLANS OF THE BUILT COMPLEX OBJECTS

Union of Surveyors and Land Managers in Bulgaria Sofia, 2022

Annotation

Books 3 of Part 1, Engineering Surveying of Applied Geodesy, consider the nature, tasks and role of Engineering Surveying in the **design**, **tracing**, **construction** and **operation** of **specific types** of engineering objects – linear objects, buildings, facilities and installation of technological equipment, plans, models and information systems of built complex sites, etc.

Due to the versatility of the problems treated and the large volume of the matter discussed, exceeding 1500 computer pages, Book 3 is issued as three books -3(3.1), 3(3.2) and 3(3.3).

Book 3(3.1) presents the design, construction, operation and reconstruction of linear objects and the specificities of geodetic works for railways, roads, objects of electric supply, communications, water supply and sewerage, cable-ways as well as tunnels and metro lines.

Book 3(3.2) includes the problems related to the design, construction and installation of facilities along other linear objects, e.g., bridges, as well as geodetic methods and technologies for tracing, control measurements and studies of their deformations. The same problems are also considered for hydrotechnical objects, built independently or in complexes of engineering ones – dams, cascades, etc., as well as hydro melioration objects, river corrections, floods and droughts and ports.

Book 3(3.3) presents the research, design, tracing and control and deformation studies during the construction, assembly and operation of buildings, industrial facilities and technological equipment, installation of machines for various purposes, as well as civil objects – airports, sport, high-rise objects, etc. Further on the composition of plans and modelling is shown for the built objects – BIM (Building Information Models) and the cadastre of communications of complexes of engineering objects and relevant information systems, respectively – Specialized Data (model) of underground communications, as well as other engineering aspects of application.

The exposition in 3(3.1), 3(3.2) and 3(3.3) provides first brief **specific information about the essence, construction, requirements, regulatory base and features of the various objects.** So, among other things, *up-to-date* engineering information and terminology are used and experts speak the same language, even more so that the problems addressed are *interdisciplinary* ones.

The book is with an original **structure**. The exposition is in conformity with the accepted way of presentation in Books 1 and 2 of the authors, with the current regulatory framework and the possibilities afforded by modern digital devices, instruments, systems and technologies. It **reflects** to a significant extent the views, years of research, teaching experience, involvement in the construction and study of deformations of engineering objects, including such with original spatial design solutions, implemented with the participation of the authors.

Books 3(3.1), 3(3.2) and 3(3.3) are intended for specialists working on construction (research, design, construction, installation) and operation of various engineering objects and complexes of them, as well as for lecturers, PhD students, students in the area of Architecture, Civil Engineering and Geodesy, etc., and for practitioners in the field of construction and engineering surveying, recommendably with books 1 and 2.

We dedicate to: Natalia Ivanova Mileva – wife and mother.

The entire edition of 5 books {1, 2 and 3(3.1), 3(3.2), 3(3.3)} of Engineering Surveying we also dedicate to the 150^{th} Anniversary of the Bulgarian Academy of Sciences.

The authors

Reviewers:

- 1. Corr. Member Prof. D.Sc. Dr Arch. Atanas Kovachev, Assoc. Prof. Dr Eng. Veneta Kotseva
- 2. Assoc. Prof. Dr Eng. Todor Kostadinov
- 3. Assoc. Prof. Dr Eng. Lachezar Hrischev
- 4. Dr Eng. Ivan Kalchev Ivanov

ISBN 978-619-90732-6-1 (hardcover) ISBN 978-619-90732-8-5 (pdf)

Preface

Book 3 "Construction of linear objects, buildings, facilities and installation of technological equipment. Plans of the built complex objects" is issued, as already mentioned, in three separate books -3(3.1), 3(3.2) and 3(3.3).

They are part of the **Applied Geodesy** project of the authors, consisting of three parts: **1. Engineering Surveying, 2. Natural scientific aspect of Geodesy application, 3. Other applications of Geodesy.** The three together treat the versatile application of geodesy.

Part 1. Engineering Surveying is issued in the form of Book 1 Basics, systems and technologies in Engineering Surveying – 498 p., and Book 2 Design and implementation of development and master (physical) plans – 330 p., which together with Book 3(3.1) Construction of linear objects, buildings, facilities and installation of technological equipment. Plans of the built complex objects – 524 p., are already in digital form and are distributed by the electronic bookstore [http://Biblio.bg] and in an analogue form by the bookstores of UACEG, UMG, SEK bookstore for building literature and others. They are issued by the Avangard Publishing House and are editions of the Union of Surveyors and Land Managers in Bulgaria (Ed. No 978-619-90732), supported by BAS and SRTI. Book 3 (3.2) - 530 pages and Book 3 (3.3) - 466 pages, bearing the same title as Book 3.1, will also be distributed there.

The reason for the separate publication of part of the problems of Engineering Surveying in books 3(3.1), 3(3.2), 3(3.3), as already mentioned, is on the one hand: the large volume of the materials on Engineering Surveying; and on the other hand the specifics and thematic distinguishing of the topics; the realized for the first time differentiation, systematization, generalization and representation of the modern achievements in this area in the form of systems, methods and technologies (a basic, indivisible element and a prerequisite theoretical and practical, for the subsequent realization also of individual specific engineering objects or a complex of them); the **necessity** of broader presentation of the issues of research, design, construction, control and studies of the deformations of particular objects or complexes of them, due to the fact that many complex specific problems emerge and have to be solved by the surveyors. Unfortunately, there are a few or no examples and detailed generalizations for this in reference literature. However the authors consider that it is very useful to summarize the information and experience in this context and to present it to the surveyors, since the experience in engineering surveying is of extreme importance for solving the problems; and to the broad circle of specialists, working particularly only in this area. Last but not least, its separate publication will make it **much easier accessible** and **convenient** for use. This is also enhanced by its realization with the modern possibilities of digital publication and use, including with mobile devices.

Arguments have been pointed out for the publication of Book 3 as three books – books 3(3.1), 3(3.2), 3(3.3).

At the same time there is planned, immediate and inevitable connection between the matter treated here and its specific implementation and the other two books of Part 1. Engineering Surveying 1 and 2. The application during construction is implied – the design, tracing and control in the course of the building process, installation and operation of the different types of specific engineering objects and complexes of them. This means that the five books represent a whole, an integral organic entity – Engineering Surveying. Therefore, the whole numbering of titles, figures and tables, etc., is an indivisible part – an element of 1. Engineering Surveying. This also determines the inclusion of this book further on in a unified digital edition as 1. Engineering Surveying. In fact, as already noted, it was intended to be included as an indivisible part of it. Something that has not been done so far in the world literature in this area.

In the literature devoted to Engineering Surveying there are actually a few comprehensive specialized works, dedicated entirely to Engineering Surveying. However, there are a lot of those dedicated to specific applications of Engineering Surveying. They have found to a large extent their place in the offered work, of course together with the modern regulatory base.

In Books 3, as well as in the already issued two books -1 and 2, the **decimal numbering system** is used. Due to the large number of titles and their multiple stages, for the sake of clarity, an original simplification has been made here by introducing sequentially a four-stage numbering as in our previously mentioned Books 1 and 2. It consists in introducing the conventional four-stage numbering, applying if necessary, new additional one or two four-stage numbering in the cases, when it has to be exceeded.

In books 3 however, **the individual sections had to be formatted independently** in terms of **numbering** of reference literature, figures, tables and formulas due to the complexity and multifarious nature of continuous numbering. Such a problem actually arises here as with quoting text titles, although not quite often. So, except for the accepted rule for citing from one book to another, for the five books, new moments of citing appear here for quoting from one section to another in books 3. It is accepted to place the number of the section before the cited number of a figure, table, formula, reference literature. For example, if it is necessary to cite Fig. 56 of section 3.6 – bridges, in some other section, citing in the other section has the form Fig. 3.6-56, respectively Table 3.6-5, formula 3.6-35, reference literature source [3.6-25]). In this way the identity is ensured.

The authors acknowledge their gratitude to the Union of Surveyors and Land Managers in Bulgaria for issuing the book under its auspices, as well as for the assistance and support rendered for the preparation and realization of the book. We also thank BAS and SRTI (the books are placed in the internet page of the institute) for their support. We acknowledge our gratitude to the reviewers Corr. Mem. Prof. D.Sc. Dr Arch. Atanas Kovachev and the co-reviewer Assoc. Prof. Dr Eng. Veneta Kotseva {and in addition for her review and improvement of part of the manuscript of book 3(3.2)}, to Assoc. Prof. Dr Eng. Todor Kostadinov and Dr Eng. Ivan Kalchev {books 3(3.1), 3(3.2), 3(3.3)} for the positive reviews of the book and to M.Sc. Econ. Ilian Panchev for the efficient collaboration in solving problems with the computer preparation of the books. Our gratitude is also expressed in some sections to other colleagues with contribution to the realization of the topics. Special thanks to Prof. Dr Eng. Keranka Vasileva for the comprehensive comparative review and her suggestions for improving books 3(3.2) and 3(3.3).

We owe special gratitude to Eng. Kristina Galabova for the unreserved and active cooperation in preparing the tables, formulas and most of the figures for press, compiling the indices, etc., as well as to Svetla Petrova and Eng. Ivanka Koleva for elaborating the title page of the book and to Eng. Ekaterina Krusteva for translating parts of the book to English.

Sofia, March, 2022

The authors

3.6. DESIGN, TRACING AND CONTROL IN BRIDGE CONSTRUCTION	20
3.6.1. Bridges and their construction	20
3.6.1.1. General data and characteristics of bridges and related problems	20
3.6.1.2. Types of bridges	22
3.6.1.3. Design of bridges	27
3.6.1.4. Technologies for construction and assembly of bridges	30
1. Technologies for monolithic construction of bridges	30
1.1. General	31
1.2. Cantilever concreting	31
1.3. Movable formwork	32
2. Technologies for bridge assembly	32
2.1. General statements	32
2.2. Assembly by crane on the terrain	32
2.3. Cantilever assembly by crane	33
2.4. Longitudinal launching	35
2.5. Span-by-span assembly	35
2.6. Assembly with prefabricated auxiliary systems	35
3. Modular systems	35
4. Additional applications of cantilever bridge construction	36
5. Sequence of cantilever construction	37
3.6.2. Regulatory base and main requirements for bridge construction	39
3.6.3. TYPE AND SCOPE OF GEODETIC WORKS IN BRIDGE CONSTRUCTION	41
3.6.3.1. General on geodetic works	41
3.6.3.2. Geodetic and topographic works related to preliminary studies and design of bridge	es
and other relevant studies	42
1. Topographic and geodetic base for bridge design	42
1.1. Principle statements	42
1.2. Type of the geodetic reference networks	43
1.3. Specific geodetic part in bridge design	44
2. Other studies	46
3. Specific solutions in the feasibility studies and design of large bridges in Bulgaria	a 47
3.1. Solutions for Danube Bridge 2, Vidin – Calafat	47
3.1.1. General data about Danube Bridge 2 and the related geodetic works	47
3.1.1.1. Danube Bridge 2	47
3.1.1.2. General on the geodetic works related to this stage of bridge construction	49
3.1.2. Preliminary studies and provision of geodetic and cartographic informat	ion,
information about the natural, infrastructural and other conditions for bridge design	52
3.1.2.1. General statements	52
3.1.2.2. Geodetic reference networks for collecting information, design and	
construction, assembly and operation of Danube Bridge 2 and their	
evaluation	54
3.1.2.3. Analysis of the initial geodetic surfaces, coordinate and height systems.	
Problems and solutions	54
1. Preliminary information	54
2. Connecting, integrated GNSS and angular distance networks, respectively	۶
height networks, on the Bulgarian and Romanian banks	55
2.1. DGPS measurements. Methodology	55

2.2. Connecting measurements on the Bulgarian side	56
2.3. Connecting measurements on the Romanian side	58
2.4. DGPS measurements across the river	59
2.5. Height connection across the river	60
2.5.1. Measurements and processing	60
2.5.2. Height difference between Vidin and Calafat	62
2.6. Heights in digital projects of the electronic database	63
2.7. Coordinates	64
3.1.2.4. Providing geodetic, topographic, cadastral, infrastructural, legal (expropria	tion)
and other information – basis for bridge design	66
1. Available geodetic and topographic basis in the region for design of	
Danube Bridge 2	66
1.1. State and regional network for local purposes in the area of the bridge	
to ensure the collection of topographic and other versatile information	on67
1.1.1. Updating the type and measurement of networks	67
1.1.1.1. Reference geodetic network to provide topographic survey in scale	
1:1000 of an area of about 700 ha	67
2. Elaboration of an up-to-date numerical topographic map in scale 1:5000	68
3. Combining the numerical model of the topographic map with models fro	m
the land subdivision plans in force	69
4. Exploring the location of underground conduits and facilities in	
the construction area of the bridge and the railway equipment and	
their designation in a copy of the topographic map in scale 1:5000	70
4.1. Feasibility studies	70
4.2. Plan of underground conduits	70
5. Elaboration of a numerical cadastral plan in scale 1:1000 for the area	
of Danube Bridge 2 Vidin – Calafat	72
6. Designation of the design solutions for the location of Danube Bridge 2	
and the accompanying infrastructure in the numerical model of	
the topographic map in scale 1:5000	74
7. Reference geodetic network to ensure the design of the adjacent	
Infrastructure	75
8. Plot problems and expropriation	78
9. Hydrographic measurements and investigations and depiction of	
underwater relief	79
9.1. General statements	79
9.1.1. Analysis of the initial information	79
9.1.2. Organization of work and equipment	80
9.1.3. Methodology and technology of work and normative regulations	80
9.2. Geodetic base	81
9.2.1. Work geodetic base	81
9.2.2. Data processing	81
9.2.3. Accuracy assessment	82
9.3. Topographic survey	82
9.4. Hydrographic survey	82
9.4.1. Technology and organization	82
9.4.2. Echo sounder measurements	83
9.4.3. Measurement processing	84
9.4.4. Accuracy assessment	84

9.5. Three-dimensional model of the underwater relief	85
9.5.1. Preparatory works	85
9.5.2. Modelling method	85
9.5.3. Development of an integrated numerical model	86
9.5.4. Results	87
9.6. Magnetometric measurements and research	88
9.6.1. General on the problem	88
9.6.2. Equipment	88
9.6.3. Methodology and technologies	88
9.6.4. Measurement and results	89
9.6.5. Conclusions, recommendations, activities and results of the survey	91
3.2. Solutions at the Bridge Overpass in Varna City	91
3.2.1. General data for the Bridge Overpass in Varna City – Asparuhov Bridge	91
3.2.2. Geodetic reference networks of the Bridge Overpass	93
3.2.2.1. Precise angular network	93
1. Stabilization	94
2. Measurement and processing	94
5.2.2.2. Precise leveling network	95
3.2.5. Determining the exact bridge length of the Bridge Overpass in Varia City	97
3.6.3.3 TPACING AND CONTROL OF RDIDCES	97
1 Projects for tracing and control	90
2 Preparation and tracing of a bridge axis in a straight and curved section	98
3 Detailed tracing of the bridge	100
3.1. Tracing and control of abutments, foundations and columns – plumbing	100
3.2. Tracing of bridge axis and columns with different obstacles	101
4. Tracing and control in building the bridge superstructure	101
4.1. Tracing and control in cantilever construction – concreting or assembly of the	-
bridge superstructure	101
4.1.1. Essence of the system	101
4.1.2. Geodetic base, tracing and control in cantilever concreting	103
4.1.3. Automated system of geodetic control in cantilever construction	106
4.1.3.1. Essence and requirements for the system	106
4.1.3.2. Functional flow-chart of the Geodetic Control System	107
4.1.3.3. Equipment	107
1. Measurement module (monitoring station)	107
2. Assembly module (assembly station)	107
4.1.3.4. Model of system operation in cantilever concreting	108
4.1.3.5. System preparation	109
4.1.3.6. Model of system operation in cantilever construction	109
4.1.3.7. Conclusion	111
4.2. Tracing and control in the construction of other bridge types	111
5. Specific solutions for tracing and control during the construction and	117
assembly of large bridges in bulgaria	115
5.1. TRACING AND CONTROL DURING THE CONSTRUCTION OF THE DEDDESH VIA DUCT	112
5 1 1 General data for the viaduct	113
5.1.2 Data for the geodetic network, tracing of the bridge axis and bridge column	113
Avec	115
5.1.3 Tracing during bridge column construction by climbing formwork	117
error fracting during error condition of children by children of the condition of the condi	
5.2. TRACING AND CONTROL DURING THE CONSTRUCTION OF	
---	-----
THE ABUTMENTS, COLUMNS AND SUPERSTRUCTURE OF	
DANUBE BRIDGE 2	118
5.2.1. General description of the structure, technology and requirements for the	
production, construction and assembly	118
5.2.1.1. Brief description of the bridge	118
5.2.1.2. Railway approach to the main bridge	120
5.2.1.3. Combined bridge in the non-navigable part	121
5.2.1.4. Combined bridge in the navigable part	122
5.2.2. Reference network for direct tracing and control during the construction a	nd
assembly works of the bridge	124
5.2.3. Production of the precast elements of the superstructure	129
5.3.3.1. Geometric control in the production of segments	129
1. General data	129
2. Geometric control in the production of segments	130
5.3.3.2. Production geometry	132
5.3.3.3. Theoretical geometry	135
5.2.4. Tracing and control during the construction of the abutments and column	
foundations of the bridge	135
5.2.4.1. General requirements for the tracing and control	135
5.2.4.2. Tracing of permanent piles	136
5.2.4.3. Pile head beams and abutments	137
5.2.4.4. Control of piers and pylons of the main bridge	138
5.2.4.5. Tracing of columns and abutments outside the water section	139
5.2.5. Tracing and control during the construction of the bridge superstructure	141
5.2.6. Tests of the Danube Bridge 2 structure prior to bridge commissioning	141
3.6.3.4. EXAMINATION OF BRIDGES AND STUDY OF THEIR	
DEFORMATIONS	146
1. General on bridge examination and deformation studies and application of	
geodetic methods	146
2. Specific deformation studies of large bridges in Bulgaria	149
2.1. Deformation studies of Danube Bridge 2, Vidin – Calafat	149
2.1.1. General data	149
2.1.2. Study of horizontal deformations	150
2.1.2.1. Reference network and control points	150
1. GNSS network	150
2. Angular distance network	152
2.1.2.2. Stabilization and signalization	154
2.1.2.3. Measurements	155
2.1.2.4. Processing	154
2.1.3. Study of vertical deformations	157
2.1.3.1. Reference levelling network	157
2.1.3.2. Control levelling benchmarks	158
2.1.3.3. Measurement	158
2.1.3.4. Processing	159
2.1.3.5. Result discussion	160
2.1.3.6. Conclusion	161
2.1.4. General conclusion	161

2.1.4.1. Horizontal deformations and deviation from the vertical	161
2.1.4.2. Vertical deformations	161
2.1.4.3. Proposals of the contractor of geodetic measurements and investigations after the 5 th period of measurement	162
2.1.4.4. Ascertainment's and opinions	162
2.2. Studies of the deformations of Danube Bridge 1, Ruse – Giurgiu	164
2.2.1. General data for the bridge	164
2.2.2. Structural data for the bridge	165
2.2.3. Geological characteristics of the ground base in the area	166
2.2.4. Geodetic measurements and investigations of Danube Bridge 1	166
2.2.4.1. Measurements and studies for the period 1992-1999	166
2.2.4.2. Further geodetic measurements and studies	166
1. Reference network and control points to determine the horizontal	166
Displacements	167
1.1. Angular distance network	167
1.2. GNSS network in the region of Ruse	168
1.3. Reference network of deep initial levelling benchmarks	169
2. Study of individual structures of the bridge	173
2.1. Study of the horizontal deformations of supports from 18 to 25	174
2.2. Study of the vertical deformations of supports from 19 to 25	176
2.3. Study of the deflection of load bearing beams under the road and	
railway part of supports 25 to 37	180
2.4. Levelling of the bearing platforms of the supports under the continuous	
beams from support 19 to 25	184
2.5. Examination of the underwater part of supports 19, 20, 21, 22, 23 and	
24 of Danube Bridge 1	185
2.6. Monitoring and control of the cracks in the chambers of support 37	187
2.2.5. Direct assessment of the general condition of the bridge based on geodetic	100
surveys and conclusion	188
3.6.4. REFERENCES to 3.6.	188
3.7. GEODETIC WORKS RELATED TO THE CONSTRUCTION AND O	
PERATION OF HYDROTECHNICAL OBJECTS	192
3.7.1. Design, tracing and control of hydrotechnical facilities and complexes	192
3.7.1.1. General information and data about the hydrotechnical facilities	193
3.7.1.2. Brief characteristics of hydrotechnical facilities	193
1. Water-power systems	193
2. Cascades	194
3. Dams	195
3.1. General	
3.2. Classification of dam walls and related facilities	196
3.3. Characteristics and illustration of different types of dam walls	197
3.4. Hydropower plants	202
3.5. Construction of dam walls	202
4. Construction and operation of hydrotechnical facilities	203
5. Basic concepts and technical characteristics of dam water areas	205
5.1. Basic concepts and designations	205
5.2. Topographic (key) curves	205
5.5. Support curve	206
5.4. Assessment of the water resources in water reservoirs	207

3.7.2. Geodetic measurements related to the exploration of natural conditions	207
3.7.2.1. General	207
3.7.2.2. Hydrological explorations	208
1. Traditional methods	208
1.1. Brief characteristics	208
1.2. Geodetic measurements	209
1.3. Hydrometric network in the Kamchia River valley	212
2. Automated radio-controlled portable hydrographic system	213
2.1. General statements and characteristics of the system	213
2.2. Basic elements of the system	214
2.3. Basic technical characteristics of the equipment	215
2.4. Preparation of the system	217
2.5. Selection and activation of a surveying route, start of measurements	217
2.6. Processing of measurements	218
3.7.2.3. Geodetic works in geological, hydrogeological and geophysical explorations	218
3.7.3. Design and tracing of water-power systems and dam walls	220
3.7.3.1. General statements	220
3.7.3.2. Geodetic works in the design of cascades and water-power systems	220
1. Geodetic base for the design	220
2. Special local networks for design, tracing and control of dam walls	222
3. Height systems	226
3.7.3.3. Tracing of dam walls	227
1. General on tracing of dam walls	227
2. Project for tracing straight dam walls	227
3. Projects for tracing arch dam walls	231
3.1. General statements	231
3.2. Mathematical definition of the wall and determination of point coordinates	
on the water and air side of the wall	233
3.2.1. Arch variant of the Antonivanovtsi dam	233
3.2.2. Tsankov Kamak dam	236
3.2.3. Tracing project	238
3.3. Tracing of arch dam walls	240
3.3.1. General statements	240
3.3.2. Methods and tracing of arch dam walls	241
3.3.2.1. Section forward	241
3.3.2.2. Resection (section backward)	241
3.3.2.3. Profile lines	243
3.3.2.4. Combined methods	244
3.3.2.5. Method of permanent points	244
3.3.2.6. Spatial tracing with an electronic tachymeter. Other methods	245
3.3.3. Direct tracing of the shuttering panels	246
3.7.3.4. Tracing and control during the construction and assembly of a hydro-power	
plant (HPP) and the other facilities of the dam wall and HPP	248
3.7.3.5. Establishing and delineating the contours of the dam lake, determining the	
Loaded area and backwater volume	251
3.7.3.6. Determination of the water resources of water reservoirs	253
3.7.4. Study of deformations of dam walls and other hydrotechnical facilities	257
3.7.4.1. General statements	257
3.7.4.2. Principle statements in the study of different types of hydrotechnical facilities	
1. Earth-fill and earth-rockfill dam walls	259

2. Concrete and reinforced concrete dam walls	260
3. Hydro-electric power plants, derivation facilities (syphons, aqueducts, tunnels	
and other underground facilities), pressure pools, compensating water	
towers, etc	260
4. General and specific statements and solutions in geodetic surveys of	
major hydrotechnical objects	260
3.7.5. Measurement and calculation of depositions in dams	268
3.7.6. A summarized example of deformation studies of the Tsankov Kamak dam	272
3.7.6.1. Data for the dam and the wall	272
3.7.6.2. Project of the system for dam measurement and geodetic works	273
1. Project for deformation studies	273
2. Drawings (illustrations) and explanations	274
3. Preliminary investigations on the expected accuracy of the geodetic	
reference network for the study of displacements and deformations of the	
Tsankov Kamak dam	278
3.7.7. REFERENCES to 3.7	280
3.8. CONSTRUCTION AND CONTROL OF PORTS AND RIVER TRANSPORT	283
3.8.1. General statements	283
3.8.2. General data for ports and port facilities. Regulatory base and port design	284
3.8.2.1. Ports and port facilities	284
3.8.2.2. Regulatory base	288
3.8.2.3. Port design	289
1. Master (physical) plan	289
3.8.3. Geodetic activities in exploring and documenting ports	293
3.8.3.1. Overview	293
3.8.3.2. Geodetic and hydrological survey of the port region and the bottom of the	
water area	294
1. Methods and technologies for the survey	294
2. Water level	295
3. Essence and application of the different methods and technologies	297
3.1. Classical methods	297
3.2. Aerial laser bathymetry for precise survey and study of port water areas,	
riverbeds and their affiliated territories	298
3.3. Unmanned aerial photogrammetric survey of riverside areas and underwater	• • • •
relief of shallow-water zones	299
3.3.1. General statements	299
3.3.2. Unmanned aerial photogrammetric survey of the Black Sea coast and	• • •
shallow-water zones of underwater relief	301
3.3.2.1. General on the activity	301
3.3.2.2. Stages of the Unmanned aerial photogrammetric survey and results	302
3.3.2.3. Specific applications of the Unmanned aerial survey (UAS)	304
1. Byala port	305
2. Balchik Tuzla – Ikantalaka cape	306
3. Other surveyed and studied sites along the Black Sea coast	308
4. Accuracy assessment for UAS	310
4.1. UAS accuracy for the Byala port	310
4.2. UAS accuracy for the Ikantalaka cape	310
3.4. Sonar systems	311
3.4.1. General on the systems and technology	311

3.4.2. Multi-beam sonar systems and complexes	313
3.4.3. Accuracy of hydrographic measurements	321
3.4.4. Development of a numerical model of bottom relief	324
3.4.5. Application of multi-beam sonar systems	325
3.4.5.1. General data	325
3.4.5.2. Development of a numerical model of the bottom	325
3.4.5.3. Sonar mosaic of the bottom	326
3.4.5.4. Results and interpretation	327
3.5. Unmanned aerial photogrammetric and laser survey combined with single-bea	am
and multi-beam echo sounder	329
3.6. Using GNSS to precisely determine the location of points in the survey of	
underwater relief	329
3.7. Application of satellite radar interferometry in surveying and imaging	
underwater relief	329
3.8. Summary of the port survey problem	331
3.8.4. GEODETIC AND HYDROGRAPHIC MEASUREMENTS TO ENSURE	
RIVER TRANSPORT	332
3.8.4.1. General statements	332
3.8.4.2. GNSS reference geodetic network of the Bulgarian bank of the Danube River	333
3.8.4.3. Project for complex measurements and investigations of the Danube River	334
1. General data about the project	334
2. LiDAR survey of the river	336
3.8.4.4. Catamaran and hydrographic studies of the Danube River	339
3.8.5. Modern methods of tracing and control in port and related riparian	
Construction	341
3.8.6. Permissible differences in the control and acceptance of port facilities	346
3.8.7. Geodetic works in the operation of ports and the studies of their deformations	347
3.8.8. REFERENCES to 3.8	349
3.9. GEODETIC WORKS RELATED TO HYDROMELIORATION	
OBJECTS, FLOODS, DROUGHTS AND RIVER CORRECTIONS	354
3.9.1. Principle statements	354
3.9.2. HYDROMELIORATION OBJECTS	354
3.9.2.1. Type and characteristics of the objects	354
1. General data	354
2. Irrigation	355
2.1. Ways of irrigation	355
2.2. Irrigation systems	355
2.2.1. Surface irrigation systems	357
2.2.2. Irrigation by inundation (flooding)	357
2.2.3. Boundary irrigation	357
2.2.4. Irrigation by furrows	357
2.2.5. Basin irrigation	358
2.3. Sprinkler systems	358
2.4. Drip irrigation	
2.5. Micro-irrigation systems	
3. Drainage	360
3.1. Essence	360
3.2. Drainage systems	361
3.2.1. Protection of the areas from surface water. Slope canals	361

3.2.2. Drainages	363
3.9.2.2. Regulatory framework and management	363
1. Water Act 1999	364
2. Law of Irrigation Associations 2001	364
3. Management of hydromelioration	365
4. Strategy	365
3.9.2.3. GEODETIC WORKS	365
1. Type, volume, accuracy and course of geodetic works. General data	365
2. Design and tracing of the objects of irrigation and drainage systems and other	
related objects	366
2.1. Principles of design and tracing	366
2.2. Illustration of the geodetic method application for design and tracing of	
irrigation systems and fields	367
2.3. Vertical planning	369
2.3.1. Principle statements	369
2.3.2. Requirements towards the terrain for the different methods of surface	
irrigation. Levelling of the terrain	370
2.3.2.1. Requirements towards the terrain	370
2.3.2.2. Levelling of the terrain	370
1. Advantages of levelling	370
2. Disadvantages of levelling	371
3. Types of terrain levelling	371
3.1. Basic	371
3.2. Current	371
3.3. Design of levelling	371
3.3.1. Methods	371
3.3.11. General solution	371
3.3.1.2. Square grid	372
3.3.1.3. Correction of horizontals	373
3. Tracing of irrigation and drainage systems and other related objects	374
4. Tracing and performing the levelling	375
5. Solutions for specific objects	3/6
3.9.2.4. Summary	3/8
3.9.3. FLOODS	3/9
3.9.3.1. Generally, on floods	3/9
1. General statements	270
	279
2.1. European Directives 2000/60/EC and Directive 2007/60/EU	3/9
2.2. Water Act in Bulgaria	381
3. Essence, methods and technologies and measures to prevent floods	381
3.9.3.2. Regulatory base	383
3.9.3.3. Flood risk assessment and management – maps and management plans	384
1. Problems and requirements	384
2. Preliminary flood risk assessment	384
2.1. Prescriptions in the regulatory base for the preliminary flood risk assessment	384
2.1.1. EU Directive	384 295
2.1.2. Water Act	383
2.1.5. Maps of the areas infeatened by floods and maps of the areas at fisk of flooding	205
11000111g 2. Composing many of flood threatened areas and areas at risk of flooding	205 205
5. Composing maps of nood-unreatened areas and areas at risk of nooding	383

3.1. General on the maps and their composition	385
3.2. Contents of the preliminary flood risk assessment	388
4. Development of flood risk management plans	389
5. Models and systems for identification and protection of areas at risk of flooding	389
5.1. General on the models	389
5.2. GraphoTech geo-based model	390
5.3. Flood risk assessment and management in Bulgaria	392
5.3.1. Assessment of future flood risk	392
5.3.2. Flood risk maps for the Danube region	392
5.3.2.1. Flood risk maps for the Danube River	392
5.3.2.2. Flood risk maps for regions with significant potential flood risk	
(RSPFR) of inland rivers in the Danube region	393
5.3.3. Maps and assessment of the other 3 basin directorates in Bulgaria	394
5.3.4. Management plans for the basin directorates	395
6. Role of GIS	396
3.9.3.4. GEODETIC MEASUREMENTS AND RESEARCH RELATED TO FLOODS	396
1. General on geodetic works and geodetic and topographic base for flood control	396
2. Methods and technologies for a geodetic set for collecting data about the land	
and underwater relief and composing numerical terrain models	397
2.1. General on the methods and technologies	397
2.2. Use of satellite images and technologies	398
2.3. Traditional updated geodetic methods	401
2.4. Transverse profiles and requirements	401
2.5. Aerial laser scanning	403
2.5.1. Modern possibilities and their use	403
2.5.2. Laser scanning of the underwater relief – bathymetry	404
2.5.2.1. General statements	404
2.5.2.2. Advantages	405
2.5.2.3. Expenses	405
2.6. Other methods and technologies	406
2.7. Numerical models of the surface, terrain and underwater relief – requirements	406
2.8. Report on geodetic measurements and studies	407
3. Essence and specifics in composing maps for flood hazard and flood risk	408
3.1. Thematic cartography. Electronic map	408
3.2. Types and composition of flood hazard and flood risk maps	410
3.3. Structural elements of maps	413
3.4. Thematic map design	414
3.5. Presentation of results	415
4. Examples of application of geodetic methods and technologies	416
4.1. DEVELOPMENT OF A NUMERICAL RELIEF MODEL BY AERIAL	
LASER SCANNING (LIDAR) OF THE AREAS WITH SIGNIFICANT	
POTENTIAL FLOOD RISK IN BULGARIA	416
4.1.1. General statements	416
4.1.2. Contents	416
4.1.3. Initial information	417
4.1.4. Subject of the terms of reference	417
4.1.5. General reference and aim of the project	417
4.1.6. Main purpose of the contract	418
4.1.7. Scope of activity	419
4.1.7.1. Territorial range	419

4.1.7.2. Description of activities	419
4.1.8. Requirements for the contractor	419
4.1.8.1. General requirements for the contractor	419
4.1.8.2. Requirements for the implementation contractor team	420
4.1.9. Requirements for the task performance	421
4.1.9.1. General requirements for the performance	421
4.1.9.2. Accuracy	422
4.1.10. Reference systems	422
4.1.11. Flight planning and survey	422
4.1.11.1. Equipment and technical means	422
4.1.11.2. Flight planning	422
4.1.11.3. Flight calibration and control. Systematic errors	423
4.1.11.4. Survey process	423
4.1.11.5. Requirements for data processing and final materials	423
1. Data processing	423
2. Quality assurance and control (OA/OC)	424
3. Content and format of the final materials – numerical data	425
3.1. LIDAR – cloud of relief points	425
3.2. Digital height model of relief (DTM) of the "bare" earth surface	425
3.3. Digital surface model (DSM)	425
3.4. Classified point cloud	426
3.5. IN – a model of the earth surface relief	426
3.6. River sections in the surveyed territory	426
3.7. Digital relief model	426
3.8. Scheme of separating data in blocks	426
4.1.11.6. Deadline for implementation	427
4.1.11.7. Presentation of results from the project implementation	427
4 1.11 8. Acceptance of the project implementation and payment	428
4 1.11.10. Work project	429
4 1.12. Rights of use	429
4 1.13. Premises and equipment	429
4 1.14. Additional information	430
4.2. LASER SCANNING IN SIMULATION OF HIGH WATER IN THE REGIC)N
OF PLOVDIV	430
4.2.1. Scope of the project	430
4.2.2. Aerial laser scanning. Orthophoto. Thermal survey	431
4.2.3. Geodetic measurements of transverse structures of the Maritsa River	431
4.2.4. Terrain model to determine high water	431
4.2.5 Hydrology	432
4.2.6 High water simulation	432
4.3. DEVELOPMENT OF A SYSTEM AND MEASURES AGAINST FLOODS	152
OF PARTICULAR OBJECTS SITUATED ALONG THE VALLEYS	
AND TRIBUTARIES OF THE RUSENSKI LOM RIVER	433
4.3.1 General activities and measures related to floods	433
4.3.1.1 Data and information about the circumstances Parameters of the runoff	755
and facilities	433
A 3 1 2 Preliminary and preparatory works	435
A 3 1 3 Model investigations	<u>121</u>
4.3.1.4. Measures for improving sefety in ease of high water	424 121
4.3.1.4. Intrastricts for improving safety in case of high water	434
4.5.1.5. reclinical and work projects for reconstruction and new flood protection	

infrastructural objects	435
4.3.1.6. Composing maps of the hazardous regions and maps of the areas at	
flood risk	436
4.3. Geodetic activities	
4.4. Some geodetic technologies and activities in the East Aegean Basin	
Directorate for water management	436
4.4.1. Activities	436
4.4.2. General outlook of the flood hazard maps for probability of 5% and 1%	442
3.9.4. DROUGHTS	444
3.9.4.1. General statements	444
3.9.4.2. Data about the Studena dam	445
3.9.4.3. Numerical model of the Studena dam lake	446
1. Unmanned aerial survey of the dry part of the dam	446
2.1. Preliminary planning of flights for aerial photogrammetric survey	446
2.2. Flight plan	448
2.3. Reference photogrammetric points	449
1.4 Aerial photogrammetric survey	450
1.5. Processing of aerial photographs	451
1.6 Control on result processing	454
1.7 Results	455
1.8 Additional processing for terrain and situation modelling	458
2. Unmanned survey of the underwater relief of the Studena dam	458
2.1 Data about the conditions	458
2.1. Data about the conditions	458
2.2. Numerical model of underwater relief	453
2.5. Numerical model of underwater refer 3. Combining the results of surveying the dry and underwater part of the dam	405
3.1. Transformation of coordinates into a uniform system	405
3.2. Combined model of both types of survey	405
3.9.4.4 Determination of water volumes and flooded areas	400
3.0.4.5 Additional information about the object	407
3 0 5 DIVED CODDECTIONS	409
3.9.5.1 General statements	470
1 Essence	470
2 Definitions	470
3952 Methods and technologies for implementing river corrections	472
1. Categories of corrections	472
2. Widening of riverbeds	472
3. Dragging and removal of deposits	472
4. Riverbed stabilization	473
5. Riverbed maintenance	473
3.9.5.3. Regulatory base	474
3.9.5.4. Design of correction	475
1. Initial data and materials, requirements and principles	475
2. Design of the alignment axis in situation plan	476
3. Longitudinal profile	479
4. Transverse profiles	481
4.1. Requirements and types of transverse profiles	481
4.2. Design of the transverse profile	482
4.3. Hydraulic dimensioning	483

4.4. Types of corrections and their transverse profiles	484
5. Current modern requirements and correction solutions	485
5.1. Solution in a situation plan	485
5.2. Solution in a longitudinal profile	485
5.3. Solution in a transverse profile	486
3.9.5.5. Performance of corrections	486
3.9.5.6. Geodetic works	487
3. Geodetic part of the river investment project	487
2. Provision of information and design	489
2.1. Geodetic and topographic base	489
2.2. Design and coordination of the axis and objects of the correction alignment	491
2.3. Composing the longitudinal and transverse terrain profile of the river	492
3. Projects and correction tracing	492
4. Examples of application of geodetic measurements and technologies	493
4.1. Riverbed stabilization and socialization of the Maritsa River within the	
Plovdiv City	493
4.2. Road junction of the Struma Motorway – Drenovska River corrections	494
4.3. Correction of the Suhodolska River in the range of the Suhodol quarter,	
Ovcha Kupel region, Sub-project: First stage from Bregalnitsa St. to	
Trayan Tanev St., Sofia	496
4.4. Geodetic and hydrographic measurements to ensure river transport –	
the Danube River	496
3.9.6. Conclusion	496
3.9.6. REFERENCES to 3.9	496
INDEX	502
English presentation of the book	511
Annotation	513
Preface	515
CONTENTS	517
Autobiographies of the authors	530

Cor. Mem. Prof. Dr. Eng. Georgi Milev. Graduate of the University of Architecture, Civil Engineering and Geodesy (UACEG), Sofia (1956). In 1960 – Research Associate in the Bulgarian Academy of Sciences (BAS). In 1976 – Associate Professor, 1985 – Professor, 2008 – Cor. Mem. of BAS. Since 1988 – Cor. Mem. of the Bavarian Academy of Sciences, Germany. In 1973 – defended a PhD thesis in the Stuttgart University. Since 2001 – lectures to the students on Geodesy and Engineering Geodesy in UACEG, German lingual education.

The scope of his diverse and efficient activities is significant – scientific, applied research, scientific-organizational, educational, international, promotional, publishing, inventive, expert, scientific

managerial and implementation. Basically, these activities were carried out in BAS, the Federation of Scientific Technical Unions in Bulgaria (FSTUB), the Union of Scientists in Bulgaria, UACEG and other institutions in Bulgaria and in international organizations and projects, mostly on an interdisciplinary ground.

The scientific activity of Prof. Milev covers both aspects of geodesy – natural and engineering. The number of his publications exceeds 580, of them 16 separate monographs, 9 studies, 5 books – each one of which is a system of monographs, 26 editing and publishing of scientific proceedings, 120 scientific papers, 243 scientific reports, etc. He was awarded by Stuttgart University for high scientific achievements of his thesis (1973).

Prof. Milev is honorary member of the International Federation of Surveyors (FIG), FSTUB and others. He had been a chairman of the Union of Surveyors and Land Managers in Bulgaria since 1990 for 24 years and later – its honorary chairman. He is Editor in chief of the Geodesy, Cartography and Land Management magazine since 1997. Member of BAS. Space research and Technologies Institute.

Honorary Prof. Dr. Eng. Ivo Milev graduated geodesy and mine surveying at the University of Mining and Geology, Sofia in 1991. He defended his PhD thesis in 2000 at the Technical University, Berlin – direction Construction and Geodesy.

He works in both aspects of geodesy – engineering and natural, but mainly in the area of Applied Geodesy – Engineering Surveying. This includes primarily the development of theory, software and application of adjustment – processing the results of geodetic measurements; GNSS – theory, software and application, alone and combined with data from other measurements; theory and software and application in the study of deformations of engineering objects – buildings and facilities, and the terrains for their situation; modern techniques of measurement – electronic tachometry, laser

scanning and others, development, software and application. Special attention is paid to transport objects, particularly to railroad parameters. He has registered two patents associated with his name in implementing the system of the Leika Concern Geosystems.

He was: expert of UN – OOSA on reference systems; member of the Steering Committee of EUPOS (EUropean Positioning Determination System); chairman of Working Group Private Services RTCM SC 104 (Radio Technical Commission for Maritime Services); guest professor at Beuth University of Applied Sciences in Berlin, East Kazakhstan Technical University, State Technical University of Kazakhstan and Siberian State Geodetic Academy.

Prof. Ivo Milev is a member of Working Group 4 Engineering Surveying of the Union of German Surveyors; Chairman of Commission 6 Engineering Geodesy of the International Federation of Surveyors for the period 2013-2017. He is an Executive Director of TechNet-rail GmbH. He is Honorary Prof. of the Siberian State Geodetic Academy, Russia and of the Technical University of Dresden, Germany.

Corr. Mem. Prof. Dr. Eng. GEORGI MILEV Hon. Prof. Dr. Eng. IVO MILEV

APPLIED GEODESY Part 1 ENGINEERING GEODESY

> Book 3(3.3) CONSTRUCTION OF LINEAR OBJECTS, BUILDINGS, STRUCTURES AND INSTALLATION OF TECHNOLOGICAL EQUIPMENT. PLANS OF BUILT COMPLEX OBJECTS

Prof. Dr. Eng. GEORGI MILEV Hon. Prof. Dr. Eng. IVO MILEV

APPLIED GEODESY Part 1 ENGINEERING SURVEYING

/

Book 3 (3.3) CONSTRUCTION OF LINEAR OBJECTS, BUILDINGS, FACILITIES AND INSTALLATION OF TECHNOLOGICAL EQUIPMENT. PLANS OF THE BUILT COMPLEX OBJECTS

Union of Surveyors and Land Managers in Bulgaria Sofia, 2022

Annotation

Books 3 of Part 1, Engineering Surveying of Applied Geodesy, consider the nature, tasks and role of Engineering Surveying in the **design**, **tracing**, **construction and operation** of **specific types** of engineering objects – linear objects, buildings, facilities and installation of technological equipment, plans, models and information systems of built complex sites, etc.

Due to the versatility of the problems treated and the large volume of the matter discussed, exceeding 1500 computer pages, Book 3 is issued as three books -3(3.1), 3(3.2) and 3(3.3).

Book 3(3.1) presents the design, construction, operation and reconstruction of linear objects and the specificities of geodetic works for railways, roads, objects of electric supply, communications, water supply and sewerage, cable-ways as well as tunnels and metro lines.

Book 3(3.2) includes the problems related to the design, construction and installation of facilities along other linear objects, e.g., bridges, as well as geodetic methods and technologies for tracing, control measurements and studies of their deformations. The same problems are also considered for hydrotechnical objects, built independently or in complexes of engineering ones – dams, cascades, etc., as well as hydromelioration objects, river corrections, floods and droughts and ports.

Book 3(3.3) presents the research, design, tracing and control and deformation studies during the construction, assembly and operation of buildings, industrial facilities and technological equipment, installation of machines for various purposes, as well as civil objects – airports, sport, high-rise objects, etc. Further on the composition of plans and modeling is shown for the built objects – BIM (Building Information Models) and the cadastre of communications of complexes of engineering objects and relevant information systems, respectively – Specialized Data (model) of underground communications, as well as other engineering aspects of application.

The exposition in 3(3.1), 3(3.2) and 3(3.3) provides first brief specific information about the essence, construction, requirements, regulatory base and features of the various objects. So, among other things, *up-to-date* engineering information and terminology are used and experts speak the same language, even more so that the problems addressed are *interdisciplinary* ones.

The book is with an original **structure**. The exposition is in conformity with the accepted way of presentation in Books 1 and 2 of the authors, with the current regulatory framework and the possibilities afforded by modern digital devices, instruments, systems and technologies. It **reflects** to a significant extent the views, years of research, teaching experience, involvement in the construction and study of deformations of engineering objects, including such with original spatial design solutions, implemented with the participation of the authors.

Books 3(3.1), 3(3.2) and 3(3.3) are intended for specialists working on construction (research, design, construction, installation) and operation of various engineering objects and complexes of them, as well as for lecturers, PhD students, students in the area of Architecture, Civil Engineering and Geodesy, etc., and for practitioners in the field of construction and engineering surveying, recommendably with books 1 and 2.

We dedicate to: Natalia Ivanova Mileva – wife and mother.

The entire edition of 5 books {1, 2 and 3(3.1), 3(3.2), 3(3.3)} of Engineering Surveying we also dedicate to the 150^{th} Anniversary of the Bulgarian Academy of Sciences.

The authors

Reviewers:

- 1. Corr. Member Prof. D.Sc. Dr Arch. Atanas Kovachev, Assoc. Prof. Dr Eng. Veneta Kotseva
- 1. Assoc. Prof. Dr Eng. Todor Kostadinov
- 2. Assoc. Prof. Dr Eng. Lachezar Hrischev
- 3. Dr Eng. Ivan Kalchev Ivanov

ISBN 978-619-90732-7-8 (hardcover) ISBN 978-619-90732-9-2 (pdf)

Preface

Book 3 "Construction of linear objects, buildings, facilities and installation of technological equipment. Plans of the built complex objects" is issued, as already mentioned, in three separate books -3(3.1), 3(3.2) and 3(3.3).

They are part of the **Applied Geodesy** project of the authors, consisting of three parts: **1. Engineering Surveying, 2. Natural scientific aspect of Geodesy application, 3. Other applications of Geodesy.** The three together treat the versatile application of geodesy.

Part 1. Engineering Surveying is issued in the form of Book 1 Basics, systems and technologies in Engineering Surveying – 498 p., and Book 2 Design and implementation of development and master (physical) plans – 330 p., which together with Book 3(3.1) Construction of linear objects, buildings, facilities and installation of technological equipment. Plans of the built complex objects – 524 p., are already in digital form and are distributed by the electronic bookstore [http://Biblio.bg] and in an analog form by the bookstores of UACEG, UMG, SEK bookstore for building literature and others. They are issued by the Avangard Publishing House and are editions of the Union of Surveyors and Land Managers in Bulgaria (Ed. No 978-619-90732), supported by BAS and SRTI. Book 3 (3.2) - 530 pages and Book 3 (3.3) - 466 pages, bearing the same title as Book 3.1, will also be distributed there.

The reason for the separate publication of part of the problems of Engineering Surveying in books 3(3.1), 3(3.2), 3(3.3), as already mentioned, is on the one hand: the large volume of the materials on Engineering Surveying; and on the other hand the specifics and thematic distinguishing of the topics; the realized for the first time differentiation, systematization, generalization and representation of the modern achievements in this area in the form of systems, methods and technologies (a basic, indivisible element and a prerequisite theoretical and practical, for the subsequent realization also of individual specific engineering objects or a complex of them); the **necessity** of broader presentation of the issues of research, design, construction, control and studies of the deformations of particular objects or complexes of them, due to the fact that many complex specific problems emerge and have to be solved by the surveyors. Unfortunately, there are a few or no examples and detailed generalizations for this in reference literature. However, the authors consider that it is very useful to summarize the information and experience in this context and to present it to the surveyors, since the experience in engineering surveying is of extreme importance for solving the problems; and to the broad circle of specialists, working particularly only in this area. Last but not least, its separate publication will make it **much easier accessible** and **convenient** for use. This is also enhanced by its realization with the modern possibilities of digital publication and use, including with mobile devices.

Arguments have been pointed out for the publication of Book 3 as three books – books 3(3.1), 3(3.2), 3(3.3).

At the same time there is planned, immediate and inevitable connection between the matter treated here and its specific implementation and the other two books of Part 1. Engineering Surveying 1 and 2. The application during construction is implied – the design, tracing and control in the course of the building process, installation and operation of the different types of specific engineering objects and complexes of them. This means that the five books represent a whole, an integral organic entity – Engineering Surveying. Therefore the whole numbering of titles, figures and tables, etc., is an indivisible part – an element of 1. Engineering Surveying. This also determines the inclusion of this book further on in a unified digital edition as 1. Engineering Surveying. In fact, as already noted, it was intended to be included as an indivisible part of it. Something that has not been done so far in the world literature in this area.

In the literature devoted to Engineering Surveying there are actually a few comprehensive specialized works, dedicated entirely to Engineering Surveying. However, there are a lot of those dedicated to specific applications of Engineering Surveying. They have found to a large extent their place in the offered work, of course together with the modern regulatory base.

In Books 3, as well as in the already issued two books -1 and 2, the **decimal numbering system** is used. Due to the large number of titles and their multiple stages, for the sake of clarity, an original simplification has been made here by introducing sequentially a four-stage numbering as in our previously mentioned Books 1 and 2. It consists in introducing the conventional four-stage numbering, applying if necessary, new additional one or two four-stage numbering in the cases, when it has to be exceeded.

In books 3 however, **the individual sections had to be formatted independently** in terms of **numbering** of reference literature, figures, tables and formulas due to the complexity and multifarious nature of continuous numbering. Such a problem actually arises here as with quoting text titles, although not quite often. So, except for the accepted rule for citing from one book to another, for the five books, new moments of citing appear here for quoting from one section to another in books 3. It is accepted to place the number of the section before the cited number of a figure, table, formula, reference literature. For example, if it is necessary to cite Fig. 56 of section 3.6 – bridges, in some other section, citing in the other section has the form Fig. 3.6-56, respectively Table 3.6-5, formula 3.6-35, reference literature source [3.6-25]). In this way the identity is ensured.

The authors acknowledge their gratitude to the Union of Surveyors and Land Managers in Bulgaria for issuing the book under its auspices, as well as for the assistance and support rendered for the preparation and realization of the book. We also thank BAS and SRTI (the books are placed in the internet page of the institute) for their support. We acknowledge our gratitude to the reviewers Corr. Mem. Prof. D.Sc. Dr Arch. Atanas Kovachev and the co-reviewer Assoc. Prof. Dr Eng. Veneta Kotseva {and in addition for her review and improvement of part of the manuscript of book 3(3.2)}, to Assoc. Prof. Dr Eng. Todor Kostadinov and Dr Eng. Ivan Kalchev {books 3(3.1), 3(3.2), 3(3.3)} for the positive reviews of the book and to M.Sc. Econ. Ilian Panchev for the efficient collaboration in solving problems with the computer preparation of the books. Our gratitude is also expressed in some sections to other colleagues with contribution to the realization of the topics. Special thanks to Prof. Dr Eng. Keranka Vasileva for the comprehensive comparative review and her suggestions for improving books 3(3.2) and 3(3.3).

We owe special gratitude to Eng. Kristina Galabova for the unreserved and active cooperation in preparing the tables, formulas and most of the figures for press, compiling the indices, etc., as well as to Svetla Petrova and Eng. Ivanka Koleva for elaborating the title page of the book and to Eng. Ekaterina Krusteva for translating parts of the book to English.

Sofia, March, 2022

The authors

CONTENTS of Book 3(3.3)

3.10. DESIGN, TRACING AND CONTROL IN THE CONSTRUCTION AND INSTALLATION OF BUILDINGS INDUSTRIAL FACILITIES	
AND TECHNOLOGICAL EQUIPMENT	18
3.10.1. General information about the construction of buildings, industrial facilitie	S
and technological equipment	18
3.10.2. Types of buildings, design, construction, installation and operation of	
buildings	18
3.10.2.1. General statements	18
1. General on buildings and exposition	18
2. Basic requirements for the structures	20
3. Structural systems and schemes of buildings	21
3.10.2.2. Classification of buildings	22
1. General on the classification of buildings, facilities and documents	22
2. Current classification of buildings	22
2.1. Main subdivision	22
2.2. Detailed subdivision	23
2.2.1. Dependence on the functions	23
2.2.2. Subdivision according to the type of structures	25
2.2.3. Types of construction	26
2.2.4. Dependence on other building parameters	27
3.10.2.3. Building design	27
1. General on design. Contents of a building project	27
1.1. General statements	27
Types of projects	28
Project content	28
1.3.1. Architectural part	28
1.3.2. Structural part	31
1.3.2.1. Choice of structure type	32
1.3.2.2. Static calculation	32
1.3.2.3. Dimensioning of elements	32
1.3.2.4. Construction and drawing of elements	32
1.3.3. Parts related to building installations	34
1.3.3.1. Part water supply and sewerage	34
1.3.3.2. Part electric	34
1.3.3.3. Part heating and ventilation	34
1.3.3.4. Part energy efficiency	34
1.3.3.5. Part gas installations	34
1.3.3.6. Parts of the project on organization and cost of construction	35
1.3.4. Part environmental impact assessment	35
1.3.5. Technological part	35
1.3.6. Geodetic part of the project and prerequisites for its development and	
application	35
3.10.2.4. Construction and control of buildings	37
1. Preparatory works at the construction site	37
2. Start of construction	37
3. Providing a construction line and level	39
4. Construction of the underground part of the building	40

4.1. Earthworks	40
4.1.1. General statements	40
4.1.2. Excavation works for buildings	42
4.2. Construction of the foundation slab, foundations, walls, columns and othe	r elements
of the underground part of the building	43
5. Technologies, construction and installation of the above-ground part of	of
buildings	46
5.1. General data	46
5.2. Auxiliary devices, equipment and activities for construction and installat	ion 46
5.2.1. Formwork	47
5.2.1.1. General data about formwork	47
5.2.1.2. Description, technologies and activities for formwork	51
1. Large area 2D and 3D formwork	51
1.1. Essence and performance	51
2.1.1. Large area formwork for walls	52
1.1.2. Tunnel formwork	52
2. Drop head formwork for construction of reinforced concrete	beamless
slabs	52
3. Composing tact plans for different formwork systems	53
4. Permanent formwork – pre-slabs and pre-walls	54
5. Climbing and creeping formwork	55
5.1 Climbing formwork	55
5.2. Creeping formwork	57
5.2.2. Cranes	59
5.2.3. Scaffolding	61
5.2.4. Reinforcement	63
5.2.4.1. Reinforcement plans and specifications	63
5.2.4.2. Placing reinforcement	64
5.2.4.3. Concrete cover and distances between reinforcement bars	64
5.3. Monolithic buildings	65
5.4. Skeleton-panel buildings	66
5.5. Large-panel buildings	6/
5.6. Buildings constructed with creeping formwork	68
5.7. Buildings constructed by the lift-slab method	69 70
5.8. Industrial buildings	/0
5.9. Assembly of metal structure buildings	/1
5.10.1 Characteristics	12
5.10.1. Characteristics	73 72
5.10.2. Facade eligineering	75 75
5.10.5. Examples 5.10.4. Realization of buildings	75
5.10.4. Realization of bundings	75
5.12 Prestressed reinforced concrete structures	75
5.12. Hestressed femiliered concrete structures	רד דר
6 Control and commissioning of buildings	,, 77
6.1 Regulation	רו רר
6.2 Acceptance of construction sites and their commissioning	78
6.3 Geodetic activities	70 79
3.10.2 5. Regulatory base	80
1. Standards, laws, regulations, ordinances, bylows in construction and assen	bly of

1. Standards, laws, regulations, ordinances, bylaws in construction and assembly of

buildings, industrial facilities and technological equipment and their con	dition
in Bulgaria	80
1.1. Standards	80
1.2. Laws, regulations, ordinances, bylaws	81
2. European regulatory framework	81
3. National regulatory framework. Basic normative documents	82
4. Assessment of the condition of construction regulations in Bulgaria	83
3.10.2.6. TRACING AND CONTROL DURING CONSTRUCTION AND	
ASSEMBLY OF BUILDINGS	. 84
1. Initial projects and geodetic basis for compiling the tracing projects and the	lr 04
application	84
2. Projects for tracing the axes of buildings	8/
3. Orthogonal way of tracing the principal and detailed axes of buildings	8/
4. Other methods for tracing the principal axes of buildings	90
5. Starting benchmark in the construction of buildings 6. Composing protocols for submission of the traced objects	90
7. Cord scaffolding and tracing of detailed axes	90
8 Tracing and control in constructing the underground part of buildings	92
8.1 Tracing control and acceptance of excavation works and shaping the exca	vation
Bottom	94
8.1.1. Tracing and control in excavation and embankment works	94
8.1.2. Instructions, requirements and control in excavation and embankment e	xecution
96	
8.1.3. Shaping the excavation bottom and its acceptance	98
8.2. Tracing and control in formwork activities	99
8.3. Tracing and control in reinforcement and concrete works	100
8.4. Permissible deviations in the construction of the underground part of b	ouildings
101	
8.5. Tracing and control in the construction of the floor structure of the building	ıg,
elevation ± 0	103
9. Tracing and control in the construction of the above-ground part of b	uildings
0.1. Compared statements	104
9.1. General statements 9.2. Course of tracing and control in the construction of monolithic buildings of	104 ofter
9.2. Course of tracing and control in the construction of monontine bundlings a	105
9.3 Performance of tracing and control	105
9.3.1 Transfer of exported axes survey acts and sketches tracing	100
9.3.2. Geodetic survey and tracing with automated (robotized) total stations	107
9.3.3. Available possibilities	108
9.3.4. Using the possibilities in geodetic survey	108
9.3.5. Using the possibilities in tracing	108
9.3.6. Conventional tracing and control of columns and slabs	109
9.4. Tracing and verifying formwork elevations on the individual floors	110
9.5. Preparatory works, tracing and control in the construction of skeleton-pan	el
buildings above elevation ± 0	111
9.5.1. Preparatory works	112
9.5.2. Assembly of columns and verifying their verticality	114
9.5.3. Tracing and control in the assembly of trusses	118
9.5.4. Tracing, assembly and control of bridge and other cranes	119

9.5.4.1. General statements	119
9.5.4.2. Tracing and assembly of crane tracks	122
9.5.5. Inspection and control of crane tracks	124
9.5.5.1. General statements	124
9.5.5.2. Specific points and geometric characteristics (parameters) of crane tracks	125
9.5.5.3. Technologies for control using modern electronic geodetic instruments	129
1. Improvement of conventional methods and technologies	129
2. Modern technologies	131
2.1. Geodetic reference networks	131
2.2. Devices and systems for signaling the control points	132
2.3. Technology of measurements with a total station	134
2.4. Software and automation of measurement processing in periodic cont	rol of
crane tracks with the polar method	137
2.4.1. Software and solved problems	137
2.4.2. Database	138
2.4.2.1. General statements	138
2.4.2.2. Fundamentals of the organization of geographic databases	139
2.4.2.3. Structure and relations in the database	139
2.4.2.4. Object and physical model for storing the results	139
2.4.2.5. Examples and conclusion	139
2.5. Other solutions in the control of crane tracks	141
2.5.1. General	141
2.5.2. Application of modern methods, technologies and systems	141
2.5.3. Commercial solutions of systems for crane track measurement	142
2.5.3.1. Laser measurement system	142
2.5.3.2. RailControl system for crane track measurement	144
2.5.3.3. RailQ system	145
2.5.3.4. RailRob system	145
2.5.3.5. ARTIS system	146
9.5.6. Permissible deviations in the construction of the above-ground part of	
buildings	148
10. Tracing and control in the construction of the above-ground part of buildings	
constructed by the large-panel, creeping formwork, lift-slab and other	
methods	150
10.1. Large-panel buildings	152
10.2. Buildings constructed with creeping formwork	152
10.3. Buildings constructed by the lift-slab method	153
10.4. Tracing and control in the assembly of metal structure buildings	154
10.5. Tracing and control in the construction of scaffolding, suspended ceilings, fa	icades
and their cladding	157
10.5.1. Scaffolding	157
10.5.2. Suspended ceilings, facades and their cladding	158
10.5.3. Volume tracing	
10.6. Design, tracing and control in the construction of buildings with compl	ex
spatial geometric solutions	160
10.6.1. General statements	160
10.6.2. Design, tracing and control in the construction of Ellipse Center, Sofia	161
10.6.2.1. General data and activities	161
10.6.2.2. Technology for precise 3D measurements and tracing of complex	
surfaces of buildings and that of Ellipse Center	161

1. Reference network	163
1.1. General statements	163
1.2. Specifics in the stabilization and signaling of the reference and control	
points	165
1.3. Measuring and processing of the network	167
1.4. Comparison between the types of reference networks	168
2. Establishing the existing position of the reinforced concrete structure after	er
stopping the construction	168
3. Solution, preparation, tracing and assembly of the facade elements	169
3.1. Facade design	169
3.2. Preparation, analytic and graphic determination of input data and	1.00
tracing data	169
3.3. Tracing and installation of facade elements	171
10.6.3. Conclusion	172
10.7. Tracing and control in the construction of very and uniquely high buildings	173
3.10.3. CHARACTERISTICS, TRACING AND CONTROL DURING	
THE CONSTRUCTION OF INDUSTRIAL AND OTHER FACILITIES	. – –
AND TECHNOLOGICAL EQUIPMENT	173
3.10.3.1. General characteristics of the facilities	173
3.10.3.2. Industrial and technological equipment and foundations for it	175
1. Industrial and technological equipment	175
2. Industrial foundations	175
3.10.3.3. Tracing and control during the construction and installation of industrial facilities	S
and technological equipment	177
1. General on the tracing and control in construction and installation	177
2. Tracing and control during the construction of industrial foundations	
3. Preparatory geodetic works for the installation	179
4. Acceptance and submission of foundations under equipment for installation	181
5. Methods of tracing and control in the course of installation	182
3.10.4. INVESTIGATION OF THE DEFORMATIONS OF INDUSTRI	iAL,
RESIDENTIAL, PUBLIC AND OTHER BUILDINGS AND INDUSTR	IAL
FACILITIES 183	
3.10.4.1. General statements and specifics in the investigation of buildings and facilities	183
3.10.4.2. Investigation of ground base raising due to excavation for the building foundation	188
3.10.4.3. Investigation of the static loading from the roof structure	192
3.10.4.4. Investigation of individual building structures on test polygons	194
3.10.4.5. Model investigations	195
3.10.4.6. Investigation of the deformations of industrial and other facilities, machines	
and technological equipment	196
3.10.4.7. Examples of examination and investigation of specific objects (structures,	
buildings and facilities) using modern technologies	196
1. Geometrical modelling of a metal structure based onlaser scanning data	196
1.1. Summary of the problem	196
1.2. Purpose and course of solution	197
1.3. Creating a point cloud and its use	198
1.3.1. From scanning to CAD model	198
1.3.2. Approximation of the surfaces to the point clouds	198
1.3.3. Approximation for a cylinder	199

1.4. Geometric modelling	200
1.4.1. Principles	200
1.4.2. Operative conformability of the software	201
1.4.3. Numerical modelling	201
1.5. Conclusion	203
2. Laser scanning of the St. Petersburg stadium	203
2.1. General on the stadium and the performed survey	203
2.2. Processing of laser scanning	204
2.3. Summary of the information	205
3.10.4.8. Large-scale investigations of deformations of a complex of buildings,	
facilities, communications and other objects and of the terrain where they	
are located	205
4. General statements	205
2. Existing circumstances, technology of strengthening of underground mine	
galleries and a project for geodetic measurements and studies after the	
decommissioning of mines in the area of Pernik	206
2.1. Existing circumstances	206
2.2. Technology of strengthening the mine terrains subjected to deformations	207
3. Project for geodetic measurements and studies and its implementation	209
3.1. Conducting the measurements	212
3.2. Processing of measurements and analysis of displacements	213
3.2.1. General information	213
3.2.2. Processing of the precise levelling measurements	214
3.2.3. Processing of GNSS observations	214
3.2.4. Processing of angular distance measurements	214
3.2.5. Processing results	214
3.5. Displacement analysis	210
3.4. Displacement assessment and interpretation	217
3.4.2. Assessment of data for horizontal displacements	217
3.5. Inferences and conclusions	217
3 10 5 REFERENCES to 3 10	217
5.10.5. KEI EREIVEES (0 5.10	210
3.11. DESIGN, TRACING AND CONTROL OF CIVIL PURPOSE FACILITIES	227
3.11.1. GEODETIC WORKS IN AIRPORT CONSTRUCTION	227
3.11.1.1. General information about airports	227
1. Data for airports	227
2. Classes and types of airports. Zones	228
3. Air navigation data for airports	230
4. General reference systems	230
5. Airport control point	230
6. Altitude of airport and run away	230
7. Physical data for an airport and related information	231
8. Regulatory base	232
3.11.1.2. Geodetic basis and airport design	233
1. Master plan design	233
1.1. General data	233
1.2. Development and approval of master plans	234
2. Volume, type and content of geodetic works	234
3. Methods and sequence in the design of vertical planning	238

3.11.1.3. Tracing and control in the process of construction	242
1. Tracing the main elements of the airport	242
2. Tracing the project for earthworks	246
3. Performance and acceptance of construction works and geodetic control	247
4. Geodetic works in airport reconstruction	249
3.11.1.4. Investigation of airport deformations	250
1. General statements, data and prerequisites	250
2. Principles	251
3. Geodetic networks	251
3.1. Precise leveling network	251
3.2. Angular distance network combined with GNSS network	252
4. Meeting the requirements of the terms of reference	253
4.1. Determination of minimum and maximum displacements and accuracy	253
4.2. Location of the control points and benchmarks and their stabilization	254
4.3. Program of measurements	254
4.4. Collecting additional data and measurements	255
4.5. Analysis of the results from the investigation of the single subprojects	255
4.6. Necessary measurements under extreme operation conditions	255
4.7. Periodicity of measurements	255
3.11.1.5. Issuing a certificate for airport airworthiness	255
3.11.1.6. REFERENCES to 3.11.1	256
3.11.2. SPORT FACILITIES	257
3.11.2.1. General on sport facilities and regulatory base	257
1. General on sport facilities	257
2. Regulatory base	257
3.11.2.2. Geodetic and map base for sport facility construction	258
3.11.2.3. Stadiums	259
1. General on stadiums. Open stadiums	259
2. Covered stadiums	259
3.11.2.4. Sport and multifunctional halls and aviaries	263
1. General data	268
2. Multifunctional Hall in Varna City	269
2.1. Geometry	269
2.2. Main structural elements of the hall	270
2.3. Geodetic networks	272
2.4. Tracing and control	273
3.11.2.5. Aviary of the National Zoo in Sofia City	276
1. Brief information about the Aviary and the existing conditions	276
2. Establishing the existing situation and elaboration of the geodetic project	278
3. Method of calculating the elements and tracing	279
3.1. Determining point coordinates for tracing of formwork, channel-forming	ng pipes
and column centres	279
3.2. Calculations	280
3.3. Tracing of the bearing contour, columns and channel-forming pipes	281
3.4. Determining the design position of the ropes	281
4. Deformation studies	281
3.11.2.6. Assessment	281
3.11.2.7. Racetracks	282
3.11.2.8. Ski-tracks and water sport facilities. Sport grounds	283
1. Ski jumping hills and water sport facilities	283

3.11.2.9. REFERENCES to 3.11.2	283
3.11.3. HIGH BUILDINGS AND OTHER HIGH FACILITIES	286
3.11.3.1. General information and regulatory base	286
1. General information	286
2. Regulatory base	291
3.11.3.2. CONSTRUCTION OF HIGH BUILDINGS	291
1. High buildings constructed on a large scale	292
2. Very high buildings	294
3. Uniquely high buildings	294
3.1. Data and solutions in the construction of the highest building in the world	294
3.2. Modern methods of dynamic tracing in engineering surveying	296
3.2.1. General statements	296
3.2.2. Technology of tracing, control and investigation of deformations	298
3.2.3. Essence and main problems in implementing dynamic tracing, control and	
investigation of building deformations	299
3.2.3.1. General statements	299
3.2.3.2. Building monitoring programs	299
3.2.3.3. Geodetic basis for building design and construction	300
3.2.3.4. Concept and system for dynamic tracing and control	300
3.2.3.5. Measurement system control – TPS / GNSS / precise inclinometer	304
3.2.3.6. Transformation of coordinate systems	305
3.2.3.7. Determination of elements, tracing and control of the building on the indiv	vidual
floors (work platforms)	305
3.2.3.8. Investigation of building found dation subsidence	306
3.2.3.9. Performance of the building monitoring program	307
3.2.3.10. Conclusion	308
3.3. Future uniquely high buildings	308
3.11.3.3. CONSTRUCTION OF TELEVISION TOWERS, MASTS AND	
CHIMNEYS	308
1. General	308
2. Television towers	309
2.1.Kopitoto television tower	310
2.2. Television tower in the town of Ruse	313
2.3. Other television towers in Bulgaria	314
3. Telecommunication masts	314
4. Chimneys	314
4.1. General information	314
4.2. Tracing and control	314
5. Investigation of deformations of television towers, masts, chimneys and oth	ier
high facilities	316
5.1. General statements	316
5.2. Requirements	317
5.2.1. Investigations of television towers	317
5.2.1.1. Kopitoto television tower	318
1. Data about the measurements	319
2. Automated system for investigating the deformations of the Kopitoto	000
TV tower	320
2.1. General data about the system	320
2.2. Description of the automated system	321

2.3. Conclusions and suggestions for one of the periodic studies of the	
tower	322
5.2.1.2. Television tower in the town of Ruse	323
1. Specificity of the deformation study	323
2. Engineering geological conditions, method of foundation	325
3. Using the measured subsidence to determine the deformation	
characteristics of multi-layer ground bases	328
3.1. Principles, solution and results	328
3.2. Result analysis	330
5.2.1.3. Other television towers	330
5.2.2. Telecommunication masts and towers	333
5.2.2.1. Main causes and deformation types occurring in masts and high towers	333
5.2.2.2. Investigation of deformations	334
5.2.2.3. Technology for combined measurement and control	335
1. Permanent real-time measurements	335
1.1. Principle settings	335
1.2. GNSS measurements. Mode of measurement	335
1.3. Inclinometer measurements	337
1.4. Measurement with both systems	337
2. Technology for measurement management, processing and visualization	n of
results	337
2.1. Management of modules	337
2.2. Data management and processing system. Database	338
2.3 Result visualization Graphics and reports	333
5.2.2.4 Conclusions	339
5.2.2.5 Video controllers	339
5.2.3 Chimneys	340
3 11 3 4 REFERENCES to 3 11 3	344
	511
3.12. PLANS AND MODELS OF THE BUILT OBJECTS AND OF THE CADAST	RE
OF UNDERGROUND COMMUNICATIONS	347
3.12.1. General statements	
3.12.2. Modern digital technologies and systems for information, modelling,	
documenting, processing and application in buildings, facilities, built comple	X
of objects and in cadastre	347
3.12.2.1. INFORMATION AND MODELING SYSTEM FOR BUILDINGS AND	
FACILITIES – BIM	349
1. BIM essence	349
2. BIM concept	352
3 Advantages of BIM	353
4 BIM application	353
5. Summary and specification	354
5.1 What is BIM?	354
5.1. What is Drive.	357
5.2. Drive development	357
5.4. Conclusions	257
6 Role of geodesists and application of geodesy in greation and application of	557 f
v. Note of geodesists and application of geodesy in creation and application of RIM	1 250
6.1 Pole and place of geodesic and surveyors in DIM	250
6.2 Goodetic activities in PIM development and application	250
0.2. Geodetic activities in Bilvi development and application	539

6.2.1. General statements	359
6.2.2. Coordinate systems	360
6.2.3. Conventional and modern geodetic instruments and activities	361
6.2.3.1. General on geodetic instruments and activities	361
6.2.3.2. Geodetic measurements related to BIM	361
6.2.3.3. Reference network and surveying	361
1. Reference network	361
2. Electronic manual measurements	362
3. Electronic tachymetry	364
6.3. Photogrammetry and BIM	365
6.3.1. General statements	365
6.3.2. Aspects of photogrammetry and BIM	366
6.4. Laser scanning and BIM	367
6.4.1. General statements	367
6.4.2. Essence	368
6.4.3. Processing of laser scanning information in Revit environment	371
6.4.3.1. Introducing the point cloud and reducing it to the local coordinate system	371
6.4.3.2. Defining levels (sections)	371
6.4.3.3. Work in the respective levels – views in plan	372
6.4.3.4. Structural elements	372
6.4.3.5. Adding groups of objects and editing them for model purposes	373
6.4.3.6. Selecting appropriate materials for the structural elements	373
6.4.3.7. Sections and construction axes	374
6.4.3.8. Excerpts from the graphic and attribute database	374
6.4.3.9. Formatting for print and export to other formats	375
6.4.4. Inferences and conclusions	375
6.5. Combining laser scanning with photogrammetric imaging	376
6.6. The challenge of BIM	376
6.7. Some geodetic aspects of BIM realization for road rehabilitation	377
6.8. BIM and 3D cadastre	377
3.12.2.2. COMPOSING PLANS OF A BUILT COMPLEX OF OBJECTS AND	
CADASTRE OF UNDERGROUND COMMUNICATIONS OF	
SETTLEMENTS	378
1. Generally valid norms and activities	378
1.1. Regulatory base	378
1.2. Technologies for composing the plans of underground communications	380
1.3. Preparatory works and survey of underground conduits and facilities	382
1.4. Devices, general data and measurement principles	382
1.4.1. General data	382
1.4.2. Measurement principles	383
1.4.2.1. Principle of electromagnetic induction	383
1.4.2.2. Acoustic method for detecting an external (underground) plumbing or duc	:t
leakage	384
1.4.2.3. Thermographic method – FLIR infrared camera	384
1.4.2.4. Georadar	385
1.4.3. Data about some devices	386
1.4.3.1. Cable locator of underground communications and Dynatel 2273 markers	386
1.4.3.2. PCE-CL 20 cable locator	387
1.4.3.3. Radio Detector locator and Hilti PS50 Scanner	387
1.4.3.4. Leica Geosystems locators	389

1. General data and specification	389
2. Accessories	391
2.1. Digitrace	391
2.2. Maxisonde (8kHz and 33kHz)	391
2.3. Digimouse (8kHz and 33kHz)	391
2.4. Bracket	392
3. Leica DS2000 system	392
1.4.3.5. Georadar Opera Duo & uNext	392
1. General data	392
2. IDS uNext GPR software	395
3. Possibilities and efficiency of the Opera Duo georadar application	
4. Surveying	397
4.1. Generally valid statements	397
4.2. Survey, elaboration and acceptance of specialized maps and registers	of
electronic communication networks, facilities and related	
infrastructure	398
2. Composing plans of a built complex of objects	400
2.1. Control and survey during construction and assembly	400
2.2. Composing an executive plan during construction	401
2.3. Composing executive plans upon completion of construction	401
2.4. Composing the final executive master plan	403
2.4.1. Order of plotting and design of the executive master plan	403
2.4.2. Symbols and design of executive plans	404
2.4.3. A set of constituent materials of the executive master plan	404
3. Cadastre of underground communications in settlements	406
3.1. Essence, purpose and features of underground conduit plans (maps) in	
settlements	406
3.2. Certificate – Executive	407
3.3. Digital technologies in cadastre	409
3.4. Database of underground conduits and facilities	409
3.5. CAD format and data transfer	409
3.6. Composing plans, catalogs and explanatory notes for underground	
communications in settlements	410
4. Information systems for underground communications of a built complex	
of objects (industrial enterprises) and cadastre (settlements)	112
4.1. General statements	412
4.2. Brief data and effectiveness of the geographic information systems related to	
the executive plans and cadastre	412
4.3. Geographic information system of Sofiyska Voda AD	414
4.4. Geographic information system of the underground infrastructure of the town	
of Dobrich	414
4.5. GIS Explorer	415
4.6. Application of the Autodesk technologies for GIS and W&S systems of the	
town of Berkovitsa	416
4.6.1. Principle settings	416
4.6.2. Autodesk technologies	418

4.6.3. Design of a model of the water supply and sewerage network	419
4.6.3.1. Database	419
4.6.3.2. Model design	420
4.6.3.3. Application of the Autodesk technology for the W&S systems	421
1. Structuring the available data	421
2. Database connection	421
4.7. Conclusion	423
5. Systems of the specialized cadastre	424
5.1. Summary of the problem	424
5.2. Electronic communication networks, facilities and related physical	
infrastructure	425
5.3. Specialized maps of GIS Sofia	426
5.4. Specialized maps and registries	426
6. Problems in representing the graphic and digital part and symbols in the	
development and master plans and in the specialized cadastre	426
3.12.3. REFERENCES to 3.12	428
3.13. SUMMARY AND CONCLUSIONS	433
3.13.1. Summary	433
3.13.2. Original solutions in the system of monographs	439
3.13.3. Conclusion	439
3.13.4. REFERENCES to 3.13	440
Index	442
English presentation of the book	449
Annotation	451
Preface	453
CONTENTS of Book 3(3.3)	455
Autobiographies of the authors of the authors	467

Cor. Mem. Prof. Dr. Eng. Georgi Milev. Graduate of the University of Architecture, Civil Engineering and Geodesy (UACEG), Sofia (1956). In 1960 – Research Associate in the Bulgarian Academy of Sciences (BAS). In 1976 – Associate Professor, 1985 – Professor, 2008 – Cor. Mem. of BAS. Since 1988 – Cor. Mem. of the Bavarian Academy of Sciences, Germany. In 1973 – defended a PhD thesis in the Stuttgart University. Since 2001 – lectures to the students on Geodesy and Engineering.

The scope of his diverse and efficient activities is significant – scientific, applied research, scientific-organizational, educational, international, promotional, publishing, inventive, expert, scientific managerial and implementation. Basically, these activities were

carried out in BAS, the Federation of Scientific Technical Unions in Bulgaria (FSTUB), the Union of Scientists in Bulgaria, UACEG and other institutions in Bulgaria and in international organizations and projects, mostly on an interdisciplinary ground.

The scientific activity of Prof. Milev covers both aspects of geodesy – natural and engineering. The number of his publications exceeds 580, of them 16 separate monographs, 9 studies, 5 books – each one of which is a system of monographs, 26 editing and publishing of scientific proceedings, 120 scientific papers, 243 scientific reports, etc. He was awarded by Stuttgart University for high scientific achievements of his thesis (1973).

Prof. Milev is honorary member of the International Federation of Surveyors (FIG), FSTUB and others. He had been a chairman of the Union of Surveyors and Land Managers in Bulgaria since 1990 for 24 years and later – its honorary chairman. He is Editor in chief of the Geodesy, Cartography and Land Management magazine since 1997. Member of BAS. Space research and Technologies Institute.

Honorary Prof. Dr. Eng. Ivo Milev graduated geodesy and mine surveying at the University of Mining and Geology, Sofia in 1991. He defended his PhD thesis in 2000 at the Technical University, Berlin – direction Construction and Geodesy.

He works in both aspects of geodesy – engineering and natural, but mainly in the area of Applied Geodesy – Engineering Surveying. This includes primarily the development of theory, software and application of adjustment – processing the results of geodetic measurements; GNSS – theory, software and application, alone and combined with data from other measurements; theory and software and application in the study of deformations of engineering objects – buildings and facilities, and the terrains for their situation; modern techniques of measurement – electronic tachometry, laser

scanning and others, development, software and application. Special attention is paid to transport objects, particularly to railroad parameters. He has registered two patents associated with his name in implementing the system of the Leika Concern Geosystems.

He was: expert of UN – OOSA on reference systems; member of the Steering Committee of EUPOS (EUropean Positioning Determination System); chairman of Working Group Private Services RTCM SC 104 (Radio Technical Commission for Maritime Services); guest professor at Beuth University of Applied Sciences in Berlin, East Kazakhstan Technical University, State Technical University of Kazakhstan and Siberian State Geodetic Academy.

Prof. Ivo Milev is a member of Working Group 4 Engineering Surveying of the Union of German Surveyors; Chairman of Commission 6 Engineering Geodesy of the International Federation of Surveyors for the period 2013-2017. He is an Executive Director of TechNet-rail GmbH. He is Honorary Prof. of the Siberian State Geodetic Academy, Russia and of the Technical University of Dresden, Germany.

5. SUMMARY AND EVALUATION

5.1. ESSENCE, ROLE AND SIGNIFICANCE OF THE SYSTEMS OF MONOGRAPHS ON ENGINEERING GEODESY¹

Corr. Mem. Dr Eng. Georgi Milev, BAS, SRTI Hon. Prof. Dr Eng. Ivo Milev, Berlin, Germany

SUMMARY

The completed system of monographs on Applied Geodesy – Part 1. Engineering Geodesy (Engineering Surveying) is presented. In fact, it summarizes the current problems of construction, architecture, spatial planning and the role and place of geodesy – Engineering Geodesy in their implementation. Thereby, for the first time, construction activity, architecture, spatial planning and Engineering Geodesy are considered together in their essence. The exposition is from an interdisciplinary viewpoint, including Engineering Geodesy as an integral part of this complex activity, in which other specialists play also an incontrovertible role. The scope, volume, division, structure and content of the individual books on the subject are presented. A summary review, analysis and evaluation of the literature in the field of Engineering Geodesy have been made. The original solutions in the system of monographs and the corresponding generalized complex literature are presented. Practically the system of monographs is a digital whole with a volume of 2870 computer pages with uniform numbering of content, text, formulas, figures, tables and literature. The analogue edition covers 5 books.

Key words: Construction, Architecture, Spatial planning, Applied and Engineering Geodesy, system of monographs.

РЕЗЮМЕ

Представена е завършената система от монографии за Приложната геодезия – част 1 - Инженерна геодезия. Тя обобщава съвременните проблеми на строителството, архитектурата, устройството на територията и мястото и ролята на геодезията – Инженерната геодезия при тяхното реализиране. По този начин, за първи път, строителната дейност, архитектурата, устройството на територията и Инженерната геодезия са изложени заедно по същество. Изложението е от интердисциплинарна позиция, включвайки Инженерната геодезия като **неотменен елемент** на тази **комплексна дейност, в която безспорна роля имат и други специалисти**. Представени са обхвата, обема, поделянето, структурата и съдържанието на отделните книги по въпроса. Направен е обобщен преглед, анализ и оценка на литературата в областта на Инженерната геодезия. Изложени са оригиналните решения в системата от монографии и съответна обобщена комплексна литература. Практически системата от монографии е едно дигитално цяло, с обем от 2870 компютърни страници с единна номерация на съдържание, текст, формули, фигури, таблици и литература. Аналоговото издание обхваща 5 книги.

¹Милев, Г. И. Милев. Същност, роля и значение на системата от монографии в инженерната геодезия. СГЗБ. С. Геодезия, картография, земеустройство. 2022,1-2, 3-8

Milev (BG), G., I. Milev (DE). Essence, Role and Significance of The Systems of Monographs on Engineering Geodesy. XXXII International symposium on modern technologies, education and professional practice in geodesy and related fields. Sofia, November 2 - 4, 2022

Ключови думи: Строителство, Архитектура, Устройство на териториите, Приложна и Инженерна геодезия, система от монографии.

1. GENERAL DATA

After eight years of work, the **system of monographs** on Applied Geodesy – Part 1. Engineering Geodesy was completed [5], [6], [7] (Fig. 1). In its essence it summarizes the current problems of construction, architecture, spatial planning and role and place of geodesy – Engineering Geodesy, in their implementation. Thereby, **for the first-time construction activity, architecture, spatial planning and Engineering Geodesy** are considered together **from interdisciplinary viewpoint**, and Engineering Geodesy – as **an integral element** of this complex activity, **in which other specialists play also an incontrovertible role**. The scope, volume, division, structure and content of the single books on the problem are **presented** here. A summary review, analysis and evaluation of the literature in the field of Engineering Geodesy have been made. The original solutions in the system of monographs and the corresponding generalized complex literature are presented. Practically the system of monographs represents a unique digital whole of monograph character with a volume of 2870 computer pages with a uniform numbering of content, text, formulas, figures, tables and reference literature. The analog edition comprises 5 books. This is not found in world literature. Maybe this achievement would be also of interest for the famous "Book of …"?!

Fig. 2. The five books from the complex monographs on Engineering Geodesy

The problems of the scope, essence and fields of Applied Geodesy and object of Engineering Geodesy were systematized and summarized when presenting Applied Geodesy in [6], as well as in the work "Milev G., I. Milev. Applied and Engineering Geodesy. S. USLMB. G, C, LM. 2017, 1-2. 3-13". In fact, the exposition on Part 1. Applied Geodesy – Engineering Geodesy, is completed with the end of section 13 of [5]. This makes possible the **analysis and comparison** of the position, principles and approach in the generalization, systematization, structuring, content and statement of the problems of Engineering Geodesy and their place in the relevant specialized literature. And at the same time to **specify, precise and clarify** these problems. Unfortunately, all this is missing in the specialized world literature in this area.

The origin of geodesy, as explained in its history, is associated with economic activities in Egypt [28], [18]. Further on this continued with the emergence, at a much later stage, of Engineering Geodesy – summarizing the geodetic works in this field. It was mainly related with construction, with building larger objects, when it was necessary to provide their planar and at a later stage – spatial geometry [9]. Along with the mass scale of the activities for construction and operation of the engineering objects and facilities and spatial planning, and together with the development of geodesy, the volume, nature, requirements, accuracy change, the methods and technologies advance, and Engineering Geodesy develops (including the software) and is increasingly integrated, becoming an indivisible element at all stages of construction and operation of the engineering objects and complexes of them.

It is also necessary to emphasize that an impetus of the **literature differentiation and evidencing** of Engineering Geodesy are first observed in the former Soviet Union. Then this was transferred to the former socialist countries, including DDR, and in consequence to United Germany, where it acquired enormous development. Engineering Geodesy was also introduced as an organizational unit in the international organizations – FIG (International Federation of Surveyors, 1958) and later in IAG (International Association of Geodesy).

The development of science and practice set new problems to be faced by Geodesy – Applied Geodesy, related to a new type of unusual for geodesy objects (colliders-accelerators, machine engineering, missiles and navigation, medicine, etc.) and activities. Many of them are **unique**, not traditionally mass objects, but with specific requirements in some cases (e.g. accuracy, parts of mm), so that it is necessary to **solve** unique geodetic problems, going beyond the frames of the usual Engineering and Natural Scientific aspects of Applied Geodesy. Moreover, the development and integration of **new physical, geodetic devices, instruments, systems, equipment, technologies, software**, etc., become necessary, which are not based on

conventional geodetic, but on other principles, some emerging recently at the modern stage. The should be included in Part 3 of Applied Geodesy.

Some of the objects and activities, however, are not principally identified with these of traditional mass Engineering Geodesy but they have an engineering nature. Such are, for example, the problems related to machine engineering, automotive industry, aircraft and ship building, robotics, etc. Therefore, they should be referred to Engineering Geodesy. To avoid confusion with the already defined mass – traditional, **Engineering Geodesy**, the above problems should be differentiated in a separate special part of geodesy – **Special Engineering Geodesy**. As already mentioned the Special Engineering Geodesy should comprise the said engineering activities and objects and the others of **engineering nature**. When the problem is related to it, its name – **Special Engineering Geodesy**, should be used. In the other cases only the **name Engineering Geodesy** would be sufficient.

2. ESSENCE OF THE SYSTEMS OF MONOGRAPHS

The necessity of generalizing, structuring and precising the scope and content of Applied Geodesy imposes, in our opinion, the introduction of certain boundaries and clear definitions. In general, three parts of Applied Geodesy are distinguished: 1. Engineering Geodesy, 2. Natural-scientific aspect of geodesy application, 3. Other (non-engineering and natural-scientific) applications of geodesy.

It is seen that this covers the realization of the versatile application of geodesy without violating the already established division and application. At the same time the first two parts include **mass applications** in the respective areas of knowledge and practice and the third part includes, in principle, **special applications and fields** not falling within the scope of the first ones {cf. also 01.3.2 of [6]}, with **more specific characteristic requirements for Applied Geodesy** and related areas, such as:

• Military affairs;

• Economy branches – related to application in the Cadastre, real estate appraisals, agriculture and forestry, environment, etc.;

• Hydrography – related to water basins: oceans, seas, lakes, river and other water sources and systems;

• Specific applications – meteorology, navigation, broadcasting, urban noise-protection systems and studies, etc.;

• Unique and typical separate objects and activities (colliders-accelerators, missiles, medicine, etc.).

It has been already noted in [5] that the **collection**, **processing and presentation of information** from the mentioned and other areas in the form of **information systems** [5], [7] are very closely related with the indicated activities. It has been also emphasized that there is certain conditionality and in the division of the presented areas **a sharp boundary cannot and should not be set and it is either not necessary**. There are **activities and decisions** that according to certain indicators may be referred to one or another direction. Methods and technologies from the Natural-scientific aspect are applied effectively and extremely successfully in the Engineering area, for example the Global Navigation Satellite Systems – GNSS and others.

Engineering Geodesy is the most comprehensively developed, widely used and with enormous reference literature of all the three aspects of Applied Geodesy.

In this way, on the basis of professional experience, there is a possibility for sufficiently **systematic, detailed and differentiated exposition of the individual aspects of the Applied and respectively of the specific mass activity in the Engineering Geodesy. On the one hand,** there is a systematization of the scope, structure and activities in Engineering Geodesy, in our

case in three main books: Book 1. Basics, systems and technologies in Engineering Surveying [6]; Book 2. Design and implementation of physical and general plans [7]; Books: 3(3.1), 3(3.2), 3(3.3). Construction of linear objects, buildings, facilities and installation of technological equipment. Plans of the built complex objects – individual objects and the facilities along them [5]. On the other hand, the exposition covers only the problems representing a direct object of Engineering Geodesy. So, figuratively speaking, the attempt "of an adult to put on his child's clothes" is avoided.

Analysing the realized exposition with a scope, structure and content of the Engineering Geodesy it may be established that it is also subordinated to certain principles, logic and connections, directly related to those of construction, architecture and spatial planning, for example mainly adherence to the principle "from the general to the particular". Moreover, it is implied here that the general solution of the objects, especially those with complex spatial solutions, is realized directly on the basis of a numerical 3D model composed in cooperation between architects, designers and surveyors. In addition, the surveyors provide first of all the axes, levels, coordinates and the designed and realized geometry (for this and other reasons they are also known as "geometers"), ensure also control in the course of construction, installation and study of deformations and, which is very important – initial and other information about the objects (GIS, BIM, etc.). Undoubtedly, in the interdisciplinary activity of construction and management of the objects, as already mentioned, other specialists have also an indispensable role.

It is also worth mentioning that in contrast to the **constructors and architects**, the **results of whose activity** are visible – **the built objects**, and which is generally perceived as a public fact, this cannot be said about the **work of the surveyors**, because the practical results of it **are integrated** in those of the constructors and architects. This activity **is known** to a great extent **by the specialists** but the results of it **are not known and are not visible** for the other citizens. It is not only invisible but it is also not directly used. To a certain extent the results of geodetic activity are visible only in vertical planning, cadastre, cartography, etc.

And something else. In fact it can be assumed that the accepted and realized here principles, activities, exposition and general joint representation of construction, architecture, spatial planning and Engineering Geodesy, together with the other activities on the construction and operation of the objects, are a prerequisite and are entirely integrated in BIM as they are presented in {3.12.2.1 of [5, (3.3)]}. This is also a very important aspect that should not be missed or neglected.

So the generalized and systematized exposition of Engineering Geodesy comprises:

Book 1 contains: The essence of Applied Geodesy; the general problems of construction as a whole (organization, normative regulation, etc.); the basics and systems, methods and technologies, on which Engineering Geodesy is built; their further content and realization.

Book 2 contains, again in accordance with architecture and construction, the **general problems of territories** – **spatial planning and arrangement, and in particular construction in built-up areas** – the complex of sites (settlements, industrial enterprises, etc.), their nature, design and application (spatial plans – general, detailed, including regulation plans, master plans), comprising and showing the role, tasks, methods, technologies of Engineering Geodesy in their development and implementation.

Book 3 continues already with the consideration of **building** specific types of objects, and here including and presenting also the role, tasks, methods, technologies of Engineering Geology in their realization. Due to the large volume of the exposition Book 3 was formed as 3 **books**: **3(3.1)**, **3(3.2)**, **3(3.3)**. Moreover, with information and **specific examples from practice** for solving the problems of individual sites, which in our opinion is of special importance.

Book 3(3.1) presents the design, construction, operation and reconstruction of linear objects and the specifics of the geodetic works in railway lines, roads, energy supply structures, communications, water supply and sewerage, cableways, as well as tunnels and metro lines.

Book 3(3.2) includes the problems related to the design, construction and installation of facilities along other linear objects, for example bridges, as well as the geodetic methods and technologies for the tracing and control measurements and study of their deformations. These problems are also considered for hydrotechnical sites, built independently or in engineering complexes – dams, cascades, etc., as well as hydromelioration sites, river corrections, floods and droughts, ports and river transport.

Book 3(3.3) presents the exploration, design, tracing and control and deformation studies during construction, assembly and operation of buildings, industrial facilities and technological equipment, installation of machines of different designation, as well as objects for civil purposes – airports, sports, high-rise structures, etc. Further on the development of plans and modelling of the built sites – BIM and cadastre of communications of complexes of engineering objects and relevant information systems, respectively – Specialized data (model) of underground communications, as well as other engineering aspects of application.

The exposition in 3(3.1), 3(3.2) and 3(3.3) provides first brief up-to-date specific information for the different objects, about their nature, construction, requirements, normative base and peculiarities. So, among other things, the actual engineering information and terminology are used and the specialists speak the same language, moreover that the considered problems are interdisciplinary.

It has been already mentioned that the material is summarized, systematized and structured and that the content is formulated and the issues of Engineering Geodesy problems considered. In addition, it has been pointed out that the exposition is original and conceived in such manner that practically not only Book 3 but also each section represents a completed independent work – a separate monograph. In this way, a new concept, a new unit in literature appeared, namely "Systems of monographs" or "System monograph", for books of such character.

3. SUMMARY REVIEW, ANALYSIS AND EVALUATION OF LITERATURE IN THE FIELD OF ENGINEERING GEODESY

In historical plan there is an **enormous number** of works devoted to Applied and Engineering Geodesy. Some of them are cited in the literature referred to here and in the literature to the separate books and sections and at the beginning of Book 1. In addition, it is appropriate to clearly emphasize that **the beginning and the distinguishing of mass Engineering Geodesy**, its formulation, definition and use as a concept have been set and differentiated in the former Soviet Union. Regardless of the fact that **large-scale projects** with a significant volume of geodetic works, with high accuracy and specific requirements **have been conducted in many other countries**.

It has to be definitely noted that there is a great variety in the type, form of presentation, essence of exposition, structure and other indicators of the works on Engineering Geodesy. Great part of the **literature sources is dedicated to individual problems** of Engineering Geodesy. However, about 90 % of the contents consist in basics and elements of **conventional geodesy** – essence, tools, survey methods, etc., and only the remaining, relatively **small volume** includes the problem of Engineering Geodesy. This was typical for publications mainly from the former Soviet Union and the other countries of the Socialist Block at that time.

Most often **works on geodesy** were written, in which **separate** sections or chapters were devoted to Engineering Geodesy. Some of them are already **complex works**, considering the
problems of geodesy and Engineering Geodesy on a modern level {28], [14]. Due to the lack of sufficient volume, this consideration is often limited or the books are with a large volume. There are also **opposite cases**, when in their greater part the works are dedicated to Engineering Geodesy but they **integrate** parts of general geodesy, geodetic tool development, traditional and unique instruments and technologies [25], problems of mathematics, error theory, etc. [27], [28].

Certain issues of Applied and Engineering Geodesy are considered in an extremely large number of works and they are very comprehensive and on a high level. Earlier this was true for publications in the former Soviet Union. In the last more than 20 years this also holds true for the countries in Western Europe and especially for Germany.

At the same time there is a large number of works in the literature aimed at providing **systematic presentation** of the issues of Engineering Geodesy. Although they consider essential problems of Engineering Geodesy, they can be defined as "fragmentary" ones. Depending on the level and experience of the author/authors the **exposition** is without a definite focus and is often chaotic – in a bulk state, not exhausting the problems. **Others** are on a relatively high level, reflecting the state of science and practice at the given stage of **development** of society. Part of them are in the form of one or several books, for example [1], [8], [2], [3], [11], [12], [13], [22], [23], [24], [15], [16], [26], [30], etc.

The main problem, in our opinion, of almost all works on Engineering Geodesy issued so far, is their detachment from their genesis, from construction, architecture and spatial planning. As we have already pointed out, the problems solved in the construction and operation of engineering objects and complexes of them are interdisciplinary. The geodetic issues here – an element of the Engineering Geodesy, are also part of these interdisciplinary problems. It is not a coincidence that instead of Engineering Geodesy, some of them were named (in the XX century, for example in the USSR and in Bulgaria) as Geodetic Works in Construction [9] or Geodesy in Construction {[4], textbook in 6 editions} or in the former Soviet Union, for example Viduev, G., D. Rakitov Application of Geodesy in Civil Engineering. M. Nedra, 1962, 1964, 399. It should not be forgotten that Prof. Bertold Witte from Bonn and co-authors, Germany, entitled the 9th edition of their book Geodesy for Construction and Basics of Building Information Modeling (BIM) and Statistics (Vermessungskunde für das Bauwesen mit Grundlagen des Building Information Modeling (BIM) und der Statistik [28]) regardless of the content and way of exposition.

In fact, there are few **full and systematic and comprehensive serious modern presentations**, devoted directly to the issues of Engineering Geodesy in the specialized world literature. Here only **two of them** will be discussed for comparison, issued recently in Germany, juxtaposed with the stated by us settings and solutions, together with the publications of Prof. Bertold Witte and co-authors. Our attitude towards them is an undeniable respect and high estimation, regardless of our criticism in some aspects, moreover that our works in this field, including dissertations, have been developed and published in Germany.

In one of the expositions, the presentation and division of the problems of Engineering Geodesy is related to works [19], [20], [21], [22]. Initially this presentation (there are also subsequent amended editions) is **realized** in single parts – **books**, **differentiated** mainly according to the available authors and their books in the area of Engineering Geodesy.

The other exposition, presentation and division of Engineering Geodesy [25] (part of the last analog of the Jordan Eggert und Kneisel – <u>http://www.springer.com/series/15072 edition</u> [29]) contains 17 sections. Great part of them (~ 8) are related to the description of principles, unique devices and measurement technologies with them.

Otherwise, in the interest of objectivity, as already mentioned, both considered publications are undoubtedly of the highest class in every other respect, especially in terms of

relevance, vanguardness and quality and can only be admired. We consider that such an estimation deserves also the publication of Prof. B. Witte and co-authors [28]. In our opinion, with certain addition, extension and focus only on Engineering Geodesy, it would also cover to a great extent its issues.

4. ORIGINAL SOLUTIONS IN THE SYSTEMS OF MONOGRAPHS

1. A new concept is introduced in the literature – System of Monographs – System Monograph;

2. Summary, systematization, classification, structuring and exposition of Applied and Engineering Geodesy according to a certain principle. Practically this is missing so far;

3. Distinguishing of the material in three parts: 1. basics, systems and technologies, 2. complex of objects and 3. individual objects;

4. Presentation of the material in 5 books {due to the large volume of the material included in Book 3 it is printed in three books 3(3.1, 3.2 and 3.3)} with a uniform numbering, contents and as a united digital edition of Part 1. Engineering Geodesy (over 2870 computer pages);

5. There is a planned, direct and inevitable connection of the considered matter and its concrete realization in the books of 1. Engineering Geodesy – a unified organic entity;

6. Uniform structuring of the individual sections;

7. Detailed interdisciplinary joint presentation of the current state of the individual objects, normative regulations and type, volume, nature and specifics of the geodetic works;

8. Development and application of an original sequential multiple (triple) four-level numbering of contents (up to 3 levels), figures, tables, citing;

9. Introducing the normative base for all objects;

10. Providing many particular examples from practice for the considered objects;

11. Composed with a multitarget purpose – science, education, application (practice);

12. The implemented here principles, exposition and summarized joint presentation of construction, architecture, spatial planning and Engineering Geodesy are a prerequisite and are entirely integrated in BIM, which is the desired perspective;

13. Maybe with the stated parameters it could be of interest for the known "Book of..."?!

5. CONCLUSION

The modern development and achievements of science and practice are reflected effectively in Applied, respectively Engineering Geodesy and hence also in the interdisciplinary application (realization) in that of construction, architecture and spatial planning. The interdisciplinary, comprehensive joint treatment of the problems is also of substantial importance and it has to find its reflection in the specialized literature dedicated to these issues. The proper joint summarizing, systematization, structuring and presentation are of special significance for the further progress in this field of knowledge.

In their exposition the authors, along with the aspiration for keeping the general moral principles have brought to the fore the correctness, confidence and mutual respect (esteem) of other authors. And in unison with the motto of the books: "*Science demands from man his whole life. And if you would have two lives, they would not be sufficient. Science requires from one high strain and great passion*" {Acad. Ivan Petrovich Pavlov (1849-1936), Nobel laureate, https://psichov.net/pavlov-ivan-petrovich/}

6. REFERENCES

- 1. Bol'shakov, F. D., G. P. Levchuk. Reference Guide on Engineering Geological Works. Moscow. Nedra. 1980.784 (in Russian).
- 2. Milev, G. Engineering Geodesy. Sofia. Tehnika, 1979, 228 (in Bulg.)
- 3. Milev, G. Practicum on Engineering Geology. Sofia. Tehnika. 1980, 124 (in Bulg.)
- 4. Milev, G., H. Duhovnikov. Geodesy in Construction. Sofia. Tehnika, I Ed. 1973, 242; VI Ed. 1999, 292 (Educational) (in Bulg.)
- 5. Milev, G., I. Milev. Applied Geodesy. Part 1, Engineering Geodesy. Books 3(3.1); 3(3.2);
 (3.2). Construction of Linear Objects, Buildings, Facilities and Installation of Technological Equipment. Plans of the Built Complex Objects. Sofia. USLMB. Avangard. {Books 3(3.1), 2019. 524; 3(3.2), 2022, 530; 3(3.3), 2022, 466} https://tinyurl.com/ums3dfv (in Bulg.)
- 6. Milev, G., I. Milev. Applied Geodesy. Part 1, Engineering Geodesy. Book 1. Basics, Systems and Technologies in Engineering Geodesy. Sofia. USLMB. Avangard. 2017. 498– https://tinyurl.com/wmbqz5c (in Bulg.)
- 7. Milev, G., I. Milev. Applied Geodesy. Part 1, Engineering Geodesy. Book 2. Design and Application of Spatial and Master Plans. Sofia. USLMB. Avangard. 2017. 330 (Book 2) – https://tinyurl.com/ums3dfv (in Bulg.)
- 8. Reference Book on Engineering Geodesy. Kiev. Vissha Shkola. 1976, 376 (in Russian)
- 9. Stoychev, D., G. Milev, A. Galabov. Geodetic Works in Construction. Sofia. Tehnika. I Ed. 1969, 480; III Ed. 1983, 516 (in Bulg.)
- 10. Gocał., Jan. Geodezjainżynieryjno-przemysłowa. Krauow; Cz. 1. 1999; Cz. II, 2209, 340; CZ. III, 2010, 378
- 11. Henneke/Werner. Ingenieurgeodäsie. Anwendung im Bauwesen und Maschinenbau. VEB Verlag für Bauwesen. Berlin. 1982, 560
- 12. Henneke/Müller/Werner. Ingenieurvermessung. Grundlagen. VEB Verlag für Bauwesen. Berlin. 1988, 314
- Henneke/Müller/Werner. Ingenieurvermessung. Handbuch und Überwachungsmessung. VEB Verlag für Bauwesen. Berlin. 1989, 360
- 14. Kahmen, H. Angewandte Geodäsie Vermessungskunde. 20., völlig neue bearbeitete Auflage. Walter de Gruyter. Berlin. New York. 2006, 680
- 15. Krumphanzl, V. Inzenyrska geodezie I. Praha. Statni nakladatelstvi technicke literatury. 1966, 372
- 16. Krumphanzl, V., O. Michalčák. Inžinierska geodézia II. Praha. Kartografie, n. p. 1975, 720
- 17. Michalčák, O. Vosika, O. Veselý, M. Novák, Z. Inžinierska geodézia II. Alfa Bratislava 1990
- 18. Milev G., I. Milev. Geodäsie (in Deutsch). Sofia. UACEG. 2012. 336
- 19. Moser, G., G. Müller, H. Schlemmer, (Hrsg): Handbuch Ingenieurgeodäsie. Auswertung der geodätischer Überwachung Messungen. Wichmann Verlag. 2000. 508
- 20. Moser, G., G. Müller, H. Schlemmer, (Hrsg): Handbuch Ingenieurgeodäsie. Grundlagen. Band. 4. Auflage. Wichmann Verlag, Berlin/Offenbach. 2012. 628
- Möser, M., G. Müller, H. Schlemmer, (Hrsg): Handbuch Ingenieurgeodäsie. Ingenieurbau. Band 2. 2. Auflage. Berlin/Offenbach. Wichmann Verlag. 2016. 338
- 22. Müller, G. Ingenieurgeodäsie: Verkehrsbau, Eisenbahnbau. Bauwesen. Berlin. 448
- 23. Müller, G. Ingenieurgeodäsie. Verkehrsbau. Grundlagen. VEB Verlag für Bauwesen. Berlin. 1984, 272
- 24. Müller, G. Ingenieurgeodäsie. Verkehrsbau. Eisenbahnbau. VEB Verlag für Bauwesen. Berlin. 1984, 448
- 25. Schwarz, W. (Hrsg). Ingenieurgeodäsie. Springer Spektrum. Berlin. 2017. 622 https://link.springer.com/book/10.1007/978-3-662-47188-3

- 26. Praca Zborowa. Geodezja Inzynieryjna. Tom I. Panstwowe przedsiebiorstwo widaenictw kartograficznych. Warszawa. 1979, 642
- 27. Schofield W., M. Breach. Engineering Surveying. Sixth Edition. Amsterdam, Boston, . . . Tokyo. Elsevier. 2007, 622
- <u>Witte</u>, B., <u>P. Sparla</u>, J. Blankenbach. Vermessungskunde für das Bauwesen mit Grundlagen des Building Information Modeling (BIM) und der Statistik. 9. Auflage Wichmann Verlag. Berlin/Offenbach. 2020, 770
- 29. http://www.springer.com/series/15072
- https://knizhen-pazar.net/products/books/2694764-inzhenerna-geodeziya-chast-1 Penev, P. Engineering Geodesy 1 (in Bulg.)
- https://uacg.bg/filebank/att_22226.pdf, https://uacg.bg/filebank/att_22227.pdf Tonkov, D. Engineering Geodesy. Part 1. Sofia. TES Design. 2018. 325. ISBN 978-954-2994-05-3
- 32. https://uacg.bg/filebank/att_22228.pdf Tonkov, D. Engineering Geodesy. Sofia, TES Design. 2018. 264. ISBN 978-954-2994-06-0.
- **Reviewers:** Corr. Mem. D. Sc. Atanas Kovachev, Assoc. Prof. Dr. Eng. Veneta Kotseva, Assoc. Prof. Dr. Eng. Lachezar Hrischev

Authors' adresses

- 1. Corr. Mem. Prof. Dr. Eng. Georgi Milev, BAS, SRTI; milev@geodesy-union.org
- 2. Почетен. проф. д-р инж. Иво Милев, Берлин, Германия.

5.2. COSMIC AND GEO-SPACE TECHNOLOGY WITH APPLICATION TO ENGINEERING GEODESY

Bulgarian Academy of Sciences. Space Research and Technology Institute. Aerospace Research in Bulgaria. 35, 2023, Sofia

New5 Books - Systems of Monographs

COSMIC AND GEO-SPACE TECHNOLOGY WITH APPLICATION TO ENGINEERING GEODESY

After nearly nine years of work the volume of 5 books Applied Geodesy – Part 1 Engineering Geodesy, was completed (2022). Each of them represents a **system of monographs (totally 2870 computer pages)**. In its essence the work summarizes the contemporary problems of construction, architecture, spatial planning and the role and place of geodesy – Engineering Geodesy, for their realization. In this way, for the first time, construction activities, architecture, spatial planning and Engineering Geodesy are considered together from an interdisciplinary viewpoint, and Engineering Geodesy also as an indivisible element of this complex activity, in which other specialists and especially geospatial technologies play also an undeniable role.

Geospatial systems, devices, methods and technologies are an important prerequisite and means of special significance in many areas of modern knowledge and its application. They are widely used at the different stages related to the exploration, design, construction and operation of the engineering objects and complexes of them. Generally, the technologies are:

1. Space and aerial Geospatial Technologies

• Global navigation satellite systems for positioning – GNSS)

• Satellite remote sensing systems – photogrammetric, laser, radar, radar interferometry, DinSAR, etc.;

• Photogrammetric, laser and other sensor systems and technologies for aerial photography, including oblique photographs (Pictometry), aerial laser scanning of terrestrial and underwater surface and other applications;

• Spatial visualization and modelling of urbanized areas.

2. Terrestrial Geospatial Technologies

- Randomly selected station spatial photo and tracing by an electronic tachymeter;
- Photo, tracing, control, management of construction machinery;
- Integrated systems electronic tachymeter + GNSS;
- Laser scanning photo, documentation, control;
- Other specialized technologies, e.g., based on the use of sensors and sensor systems.

3. Collecting, processing and presenting information using the mentioned and other areas in the form of information systems.

4. Use of Specialized Software

It is clear that the Geospatial Technologies are interdisciplinary, with a wide scope, possibilities, importance and application areas.

The emphasis in the reviewed books is laid on the application of Geospatial systems, devices, methods and technologies in *architecture*, *construction and spatial planning through Applied – respectively Engineering Geodesy.*

The bibliographic description of the books is as follows:

Milev, G., I. Milev. Applied Geodesy. Part 1, Engineering Surveying. Book 1. Basics, Systems and Technologies in Engineering Surveying. Sofia, USLMB. Avangard Publ. House. 2017. 498 p.

Milev, G., I. Milev. Applied Geodesy. Part 1, Engineering Geodesy. Book 2. Design and Implementation of Physical and General Plans. Sofia, USLMB. Avangard Publ. House. 2017. 330 p.

Milev, G., I. Milev. Applied Geodesy. Part 1, Engineering Geodesy. Books 3(3.1); 3(3.2); 3(3.3). Construction of Linear Objects, Buildings, Structures and Installation of Technological Equipment. Plans of Built Complex Objects. Sofia, USLMB. Avangard Publ. House. {Books 3(3.1), 2019. 524 p.; 3(3.2), 2022, 530 p.; 3(3.3), 2022, 466 p.}.

Data about the considered books are given in the following plate:

The books of Part 1 are formed as a complete whole. They contain uniform numbering of text, formulas, tables and black & white, and colour figures, and are in an A4 format. They are published in Avangard Publishing House and can be rchased in the bookstores of UACEG, UMG, SEK and Blestyasht Fakel.

The books were uploaded in digital form on the server of the electronic library Biblio.bg at http://biblio.bg in .pdf file format. General information and the beginning of the books to page 22 are immediately available by searching .Georgi Milev" or at https://tinyurl.com/ums3dfv. They are uploaded on the servers of ISRT-BAS (https://tinyurl.com/ums3dfv. They are uploaded on the servers of ISRT-BAS (https://tinyurl.com/ums3dfv. They are uploaded on the servers of ISRT-BAS (https://tinyurl.com/ums3dfv. They are uploaded on the servers of ISRT-BAS (https://tinyurl.com/ums3dfv. They are uploaded on the servers of ISRT-BAS (https://tinyurl.com/ums3dfv. They are uploaded on the servers of ISRT-BAS (https://tinyurl.com/ums3dfv. They are uploaded on the servers of ISRT-BAS (https://tinyurl.com/ums3dfv. They are uploaded on the servers of ISRT-BAS (https://tinyurl.com/ums3dfv. They are uploaded on the servers of ISRT-BAS (https://tinyurl.com/ums3dfv. They are uploaded on the servers of ISRT-BAS (https://tinyurl.com/ums3dfv. They are uploaded on the servers of ISRT-BAS (https://tinyurl.com/ums3dfv. They are uploaded on the servers of ISRT-BAS (https://tinyurl.com/ums3dfv. They are uploaded on the servers of ISRT-BAS (https://tinyurl.com/ums3dfv. They are uploaded on the servers of ISRT-BAS (https://tinyurl.com/ums3dfv. They are uploaded on the servers of ISRT-BAS (<a href

The books represent an original systematization, summary and apposition of this branch of science and pra monographic form and are an edition of the Union. The authors have sponsored the books.

The problems treated in the books are:

Book 1 considers the fundamentals of Engineering Geodesy – the modern investment process, legal framework, geodetic base (digital data, plans, maps and reference networks), instruments, devices and systems; reference and coordinate systems and surfaces, theoretic bases of geodetic measurement processing, algorithms and software, **modern numerical geospatial technologies and their application in Engineering Geodesy and information systems, related to it**. The main problems of tracing are presented: essence, elements, methods, technologies, accuracy, norms and case studies; theoretical bases and practice in the control and determination of displacements and deformation studies of engineering objects, including landslides.

Book 2 treats the interdisciplinary problems related to physical planning – spatial schemes, physical and general plans of complexes of objects – industrial enterprises, airports, etc., together with the role of geodesy and the contribution of surveyors to their realization. The main emphasis is laid on the technology of design and implementation of regulation plans, general (master) plans and vertical planning schemes. Moreover, the problems are treated from an interdisciplinary viewpoint, as well as from the position of modern capabilities of: digital design, geospatial technologies, use of **global satellite navigation systems**, electronic systems for measurement and data processing, tracing and control, **geoinformation systems**, use of modern digital cadastre, etc.

Books 3 continue further considering the **construction** of specific types of objects, including also the role, tasks, methods and technologies of Engineering Geodesy in their realization. Due to the large volume of the exposition Book 3, as already mentioned, is formed in 3 books: 3(3.1), 3(3.2), 3(3.3). Moreover, with information and specific case studies from practice for solving the problems of single objects, which is in our opinion of extreme importance.

Book 3(3.1) treats the design, construction, operation and reconstruction of linear objects and the specificity of geodetic works for railway lines, roads, facilities of electric supply, communications, water supply and sewerage, rope lines, as well as tunnels and metro lines.

Book 3(3.2) includes the problems related to the design, construction and assembly along other linear objects, e.g. bridges, as well as the geodetic methods and technologies for tracing and control measurements and deformation studies. These problems are also presented for hydrotechnical objects, built independently or in complexes of engineering structures – dams, cascades, etc., as well as hydromelioration objects, corrections of rivers, floods and droughts, ports and river transport.

Book 3(3.3) presents the exploration, design, tracing and control, and deformation studies in the construction, assembly and operation of buildings, industrial facilities and technological equipment, installation of various machines, as well as objects for civil purposes – airports, sport and high-rise facilities, etc. The composition of plans and the modelling of the built objects is presented further on – BIM and the communication cadastre of the complexes of engineering objects and the corresponding information systems, respectively Specialized data (model) of underground communications, as well as other engineering aspects of application.

Undoubtedly, such a vast matter cannot be comprehensively presented in all its aspects. In the structuring of the books and the exposition, a balance is sought in representing the main problems and an accent is laid on the aspects that are more directly related to the activity of surveyors in the field of spatial planning and geospatial technologies.

The books have an original structure. The exposition is in compliance with current legal framework and the possibilities offered by modern digital devices, instruments, systems and technologies. The books reflect to a great extent the views, long-term research, lecturing experience and participation in the construction and study of engineering objects, including original spatial structural solutions of the authors. The applications refer to specific real objects.

The books can be used by lecturers, students and practicing specialists in the area of architecture, construction, spatial planning and surveying – Engineering Geodesy, and all those who work in the field of construction and operation of engineering objects and complexes of them, such as architects, structural engineers – constructors, spatial planners and specialists on transport, water works, etc., designers, contractors, experts on organization and control of construction and installation of technological equipment. It is definitely recommended, if necessary, to do this using simultaneously all the five books.

Some original solutions in the systems of monographs are:

1. A new concept is introduced in literature – System/s of monograph/s – A system monograph; 2. The matter is distinguished in three groups: [1. Basics, systems and technologies, 2. Complex of objects and 3. Individual objects (three books)]; 4. Development and application of original, subsequent multiple (triple) four-level numbering of contents (up to 3 levels), figures, tables, citations; 5. Giving a large number of specific examples from practice for the considered objects; 6. The principles, exposition and generalized joint representation of construction, architecture, spatial planning, Engineering Geodesy, implemented here, are prerequisites and fit in BIM, which is the desired perspective.

The assessment of the single books and of all five books as a whole, dedicated to Engineering Geodesy within the frame of Part 1 of Applied Geodesy with an emphasis on the geospatial technologies, made by the reviewers of the edition and by the users, is extremely positive and superlative. Such evaluations are for example – systematization, generalization and complex original presentation that have not been found so far in world literature; unique work; "book of books"; the exposition is from an interdisciplinary viewpoint and for a broad circle of users with various professional and scientific interests; with original contributions to science and practice and many others.

Corr. Memb. of BAS Prof. DSs. Eng. Peter I. Y. Velinov Corr. Memb. of BAS Prof. Dr. Eng. Georgi Milev, Corr. Memb. of DGK BAS, Germany

5.3. OTHER REVIEWS AND FEEDBACK

For the individual books and the work as a whole, there is a very large number of reviews, feedback, e-mails, websites, etc. available. Most of them are published mainly in the Magazine "Geodesy, Cartography, Land Management".

Sofia, 12.03.2023

The authors.

BULGARIAN ACADEMY OF SCIENCES Space Research and Technology Institute

Prof. Dr. Eng. GEORGI MILEV Corresponding Member of BAS/BG and BAS/DE

Bulgaria, 1113 Sofia Acad. G. Bonchev Str., Bl. 1 Tel.: (+359 2) 979 24 28 Fax: (+359 2) 872 25 77 e-mail: <u>milev@bas.bg</u> Private 1113 Sofia Tintyava Str. 20, Bl.3, D Tel.: (+359 2) 872 84 71 Mobile: (+359 888) 847 292

UNION OF SURVEYORS AND LAND MANAGERS IN BULGARIA

Prof. Dr. Eng. GEORGI MILEV HONORARY PRESIDENT

108 Rakovski Street P.O. Box 431 1000 Sofia, Bulgaria Tel.: (+359 2) 987 58 52 Fax: (+359 2) 987 93 60 Mobile: (+359 882) 356 695 milev@geodesy-union.org